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 Introduction  
As sensor networks become easier to acquire and deploy, and consequently are more 

common in almost all industries and in everyday life, so ensuring the trustworthiness and 

reliability of measurements and data in such systems becomes more challenging. Not only 

as the numbers of sensors grow, but also as the inaccessibility of sensors means it is 

infeasible to use established methods for their calibration, so the difficulties of assessing 

measurement uncertainty in sensor networks and establishing the traceability of 

measurements made by such systems increases. Furthermore, due to the large volumes of 

data, it is a challenge to validate the quality of data collected from sensor networks, and it is 

infeasible to do so without automated, efficient, and reliable methods. 

The purpose of this guide is to help address the challenge of ensuring data quality for sensor 

networks. It is structured in two main parts, one related to data quality metrics and one to 

traceability.  

The part on data quality metrics (Section 2) provides guidance on the importance of data 

quality when collecting large amounts of data from sensor networks where there is less 

control over the sensor environment as well as the management and architecture of the 

sensor network, for example, compared to a laboratory setup. This includes choosing which 

dimensions of data quality are most important depending on the use case, managing data 

requirements during the lifecycle of sensor nodes, and developing ways to measure and 

quantify data quality.  

Different use cases have different metrological needs when it comes to traceability. The part 

on traceability (Section 3) addresses SI-traceability in sensor networks, providing guidance 

on different ways of calibrating sensors in sensor networks such as in-situ, self- and co-

calibration. Furthermore, it addresses the challenge of making methods of analyzing sensor 

data uncertainty-aware, for example, for sensor fusion, and using different modelling 

techniques, for example, digital shadows and digital twins.  

Different use cases are used as examples in different sections of the guide. The use cases 

are district heating networks, heat treatment of high-value components in advanced 

manufacturing, gas flow meter networks, air quality monitoring sensor networks and smart 

buildings. These are used to highlight certain challenges, needs, and both commonalities and 

differences in certain types of sensor networks within the different subjects covered in the 

guide. 
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 Data Quality Metrics in Sensor Networks 
 

2.1 Data quality metrics for sensor networks 
This section of the guide discusses approaches to evaluate the quality of a sensor network 

dataset. Evaluating application quality is important to allow the development of sensor 

applications that are resilient and robust, and to make sound decisions based on the 

underlying sensor data quality. Several data quality dimensions have been identified, 

whereby different aspects of data quality, such as accuracy, consistency, and completeness, 

are measured. Sets of data quality dimensions can be used, thus, to assess the quality of a 

dataset. When designing a sensor network, it is crucial to keep the dimensions of data quality 

in mind and potentially adjust the design of the sensor network to optimize the quality of the 

data. Indeed, the higher the quality of the data, the more reliable the results of further 

analyses will be. 

An overview of the data quality metrics identified after performing a literature review is 

included in the following subsection. Only the metrics considered most relevant for sensor 

networks by the authors of this report are described. Hence, the list of metrics provided is 

by no means exhaustive. For example, in [1] many more data quality metrics are considered 

besides those listed in this report such as drop rate, accessibility, compliance, etc. 

Furthermore, examples and data quality metrics important for the project use cases are also 

included. 

 

2.1.1 Relevant data quality metrics from the literature 

2.1.1.1 Consistency 

As defined in [2], consistency refers to the absence of apparent contradictions in a database. 

Consistency is a measure of the internal validity of a database and is assessed using 

information that is contained within the database. 

Consistency metrics help assess whether the values in a data set are consistent with the 

values previously recorded and stored. Consistency allows the improvement of data quality 

by ensuring all data remains constant. One important consistency measure is date 

consistency, which measures how many dates in a data set fall outside of their historical 

range, i.e. the time interval for which data have been measured/collected. Numeric 

consistency can tell how many values in a data set differ from the expected range. 

In [3] consistency is described in terms of constraints, as the degree to which defined 

constraints are adhered. These constraints can be used, for example, to check whether a 

value is within a specific range or if values fall inside logical bounds (such as a humidity sensor 
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that should provide only positive values). Consistency can be quantified by the percentage of 

values in the dataset that satisfy the defined constraints. 

2.1.1.2 Accuracy 

[4] describes accuracy as the degree to which data correctly represents the true value. In 

practice, the true value is often unknown. Hence, it is often required to determine a reference 

value in order to assess the accuracy of the data. The reference value can for example be 

obtained from a reference sensor, or from an aggregation of multiple sensors that measure 

the same quantity. 

[5] quantifies accuracy simply by the fraction of fields judged “correct” (or the fraction of 

“correct” records, in case each datapoint contains multiple fields).  Correct fields can for 

example be defined according to a rule-based evaluation, where a field is deemed correct if 

the difference with the reference is small enough. See for example [6]. 

In [7] and [8], accuracy of a measurement value 𝑣 is defined as the maximum absolute value 

𝑎, such that the real value (reference value) lies in the interval [𝑣 − 𝑎, 𝑣 + 𝑎]. Note that this is 

an absolute metric, rather than a relative metric. 

A general approach is described in [9], where the accuracy is calculated according to the 

distance between the measured quantities and the reference quantities 𝐷(𝑣, 𝑣′). The 

distance function is zero in case of 𝑣 = 𝑣′ and positive otherwise. The metric is defined as  

accuracy =
1

1 + 𝐷(𝑣, 𝑣′)
. 

In this definition, the perfect score for accuracy equals 1 and the closer the metric is to 0, the 

worse the accuracy of the data is. 

2.1.1.3 Completeness 

[10] describes completeness as referring to whether all required data is present, that is, 

whether any data required to deem the dataset fit-for-purpose is missing or not. 

Completeness of data ensures that all the information needed to run quality analytics and 

artificial intelligence (AI) exists. Typically, completeness is quantified as the ratio of missing 

values compared to the total number of values at the dataset, column (i.e. attributes) or 

record levels; [3], [7], [8]. 

2.1.1.4 Auditability 

In [4], auditability (in this paper referred to as traceability) is defined as “the degree to which 

data has attributes that provide an audit trail of access to the data and of any changes made 

to the data in a specific context of use”. In other words, auditability allows to trace back where 

the data comes from and to track how the data has been changed over time. Having the 

appropriate metadata, for example, can provide auditability to a dataset. A metric to quantify 

auditability is the percentage of data that cannot be traced, see [11].  
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2.1.1.5 Timeliness 

In [7] timeliness was interpreted in the context of sensor data streaming applications, as the 

difference between its recording timestamp and the current system time. In contrast to other 

data quality dimensions, timeliness takes an exceptional position as it can be calculated at 

runtime and must not be recorded, propagated, and processed during the data processing. 

In practical applications timeliness needs to be defined in a contextual manner [8] as the 

punctuality requirements of data depend on the task at hand. 

In [1] other time-related dimensions include currency and volatility. Currency focuses on how 

quickly the corresponding data are updated when they occur in the real world, and volatility 

indicates how often the data changes over time. [6] describes volatility as the length of time 

for which data remains valid, whereas currency is defined as  

currency = (𝑡real − 𝑡ideal) + (𝑡arrive − 𝑡ideal), 

where 𝑡ideal is the ideal sampling time, 𝑡real is the actual sampling time, and 𝑡arrive is the time 

needed to record the data. 

2.1.1.6 Uniqueness 

Uniqueness of a dataset refers to the absence of duplicates in a dataset. Hence, uniqueness 

can be measured by the number of duplicates present in a dataset. [12] quantifies 

uniqueness as the percentage of records having a unique primary key. Unique primary key 

refers to the value of a row/record in a dataset making that row unique. Duplicates of primary 

keys are undesirable, but some measurements can be repeated if the state doesn’t change, 

although multiple repetitions can indicate a stuck sensor. An example of a primary key could 

be a timestamp in a timeseries dataset. 

2.1.1.7 Correctness 

Correctness refers to how well the data values correspond to actual values. It can be 

separated into two aspects: semantic correctness and syntactic correctness. In the context 

of metrology, semantic correctness is about conformity between measured values and the 

actual values, i.e., correctness of the content, like accuracy. For instance, validating a dataset 

for semantic correctness can involve checking if the physical quantities (length, mass, etc.) in 

a particular dataset deviate from the expected values. Syntactic correctness is about the 

correctness of the form or structure. It could, for example, be data format and units or 

dimensions. The digital calibration certificate, for instance, requires calibration data to be 

presented in a specified machine-readable format [13]. Adhering to this format can be 

considered a form of syntactic correctness. 

2.1.1.8 Reusability 

Reusability refers to the data being understandable and useful to others. It includes 

comprehensibility and consistency. Comprehensibility refers to the quality and existence of 

metadata and being readable and uniformly represented. Consistency meaning the absence 
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of contradictions in the data and with referential integrity between the data and any 

metadata or other reference data and standards. 

Moreover, reusability is one of the foundational FAIR data principles. FAIR stands for 

Findability, Accessibility, Interoperability, and Reuse. The principles emphasize machine 

readability of data because humans are relying more and more on computers for handling 

data, due to increase in speed of data generation, as well as increase in volume and 

complexity.  

2.1.1.9 Redundancy 

In [14] several metrics are discussed to evaluate the metrological redundancy in a sensor 

network. It is argued that a higher degree of redundancy is desired, as it makes the network 

resistant to sensor failures. Three different types of metrological redundancy are discussed: 

sensor replication, sensor relevance, and network redundancy. For each type of redundancy, 

multiple metrics are proposed.  

Sensor replication considers the relationship between sensors: can readings of one sensor 

be derived from readings of other sensors? If there is sensor replication in the network, 

sensor readings can be aggregated, leading to data reduction and smaller measurement 

uncertainty. Three metrics are proposed to evaluate sensor replication: 

• Rank (the number of linearly independent rows or columns of the matrix): the rank of 

the matrix containing all sensor signals provides a discrete scale between zero and 

the number of signals on the replication of the sensor signals. A rank equal to the 

number of sensor signals indicates no replication between the sensor signals.  

• Condition number: the condition number of the matrix containing all sensor signals 

quantifies the linear dependency, and thus the replication, between the different 

signals. A condition number equal to 1 indicates orthogonality (so no replication 

between the sensor signals) and a condition number equal to infinity indicates linear 

dependency (so exact replication between the sensor signals). The user does need to 

decide on a matrix norm. A common choice is the 2-norm, but also the 1-norm and 

inf-norm are possible choices. The condition number under the inf-norm is typically 

larger compared to the 2-norm, but is also evaluated more easily. 

• Cluster: sensor replication can also be evaluated by clustering the sensor time series, 

using a measure of ‘distance’ between two time series. The silhouette scores of the 

sensors can be calculated and the number of sensors with a score of, for example, 

0.5 or 0.7 or any other appropriate value between 0 and 1, can be determined. The 

metric can be defined as the fraction of sensors with silhouette score higher than the 

threshold. A higher fraction indicates more replication between the sensors. Special 

consideration should be given to the construction of the clusters, as this will influence 

the metric. 
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Sensor relevance quantifies whether a sensor is relevant with respect to the measurand(s) 

and is determined for each sensor individually. If a sensor is irrelevant, it can be removed 

from the network without changing the estimate and uncertainty of the measurand(s). Two 

metrics are proposed to evaluate sensor relevance: 

• Sensitivity coefficients: the sensitivity coefficient 𝑐𝑖 can provide information about the 

relevance of sensor 𝑖. A discrete metric would deem sensor 𝑖 relevant when 𝑐𝑖 ≠ 0. A 

continuous metric determines the proportion of the uncertainty of the measurand 𝑦 

that comes from the data 𝑥𝑖 of sensor 𝑖: |𝑐𝑖|𝑢(𝑥𝑖)/𝑢(𝑦). The higher this value, the more 

relevant this sensor is. The sensitivity coefficients can be determined either 

algebraically or numerically, depending on the availability and form of the model 

function. The authors concluded that this metric is particularly suited for small models 

that require a small number of input data, as it is difficult to interpret the results if 

there are too many sensor values influencing a single output value. 

• Pearson’s correlation: sensor relevance can also be evaluated by Pearson’s 

correlation coefficient between the known reference or training values of the 

measurand(s) and (a feature of) the sensor data. The higher the absolute value of the 

correlation coefficient is, the more relevant the sensor is. The Pearson correlation 

coefficient is the ratio between the covariance of two variables and the product of 

their standard deviations and measures the linear dependency between two sets of 

data. If a sensor or a derived feature of the sensor data is relevant for the measurand 

in a non-linear way, this metric may not detect this. 

There is redundancy in a network if the measurand can be determined from different subsets 

of sensors. This requires that there is sensor replication of the relevant sensors. The paper 

provides two metrics to quantify network redundancy: 

• Excess sensors: network redundancy can be assessed by the number of excess 

sensors present in the network in addition to the minimum required sensors 

necessary to determine the value of the measurand. The more excess sensors, the 

higher the network redundancy. 

• Uncertainty increase: another way to assess network redundancy can be by 

determining the maximum increase in uncertainty of the measurand, after removing 

𝑚 relevant sensors from the network. The lower this value, the less the network relies 

on one or a few sensors, so the higher the degree of redundancy. 

2.1.2 Data quality metric examples of the project use cases 

This section considers different metrics for quality, divided in three subsections below, and 

how they relate to the different use cases used as examples throughout the guide. Not all 

use cases are exemplified in each of the categories.  
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2.1.2.1 General metrics 

To measure the relevance and usefulness of sensor network data, different general metrics can be 

used, such as consistency, accuracy, completeness, auditability, integrity, timeliness, uniqueness, 

and cost. Some of these metrics have been described in detail above. Depending on the use case 

some metrics might be more useful than others.  

As an example for the district heating use case, completeness and time resolution are the 

most important metrics, because when data is incomplete, it becomes difficult to analyze, 

due to correlation between flow and temperature at sensor points. Additionally, integrity is 

also an important metric, as the sensor nodes are located inside the private property, and it 

is difficult to access and verify if the installation is correct and no strange effects are present.  

For the other use cases, accuracy, traceability, completeness and timeliness are referred as 

the most important metrics. 

 

2.1.2.2 Metrics for number and quality of sensors 

Different metrics can be used as a basis for optimizing the design of a sensor network in 

terms of number and quality of individual sensors. As mentioned before, depending on the 

use case and type of network some metrics are more relevant than others. 

For the use case on district heating, information on accuracy is used, as well as number of 

heat meters and distance (pipe length) between the heat meters. The network model is also 

important, and the quality of this model can vary, for example, if individual coordinates on 

strings can properly fit each other at the connected end point. Additionally, temperature 

measurements from sensors in the network are compared to high-end, calibrated sensors. 

For environmental monitoring the exploratory studies show that if the objective is 

monitoring, at least one most-exposed site and one least-exposed site, must have sensors, 

and additional sensors depend on population density, whereas if the objective is 

characterization, one sensor is placed close to the source and several sensors are installed 

to study the decay of the source. 

For smart buildings, sensors are placed at each window/door/heater, so the number of 

sensors depends on the number of windows, doors, and heaters. The number of rooms is 

defined in such a way, that results with respect to e.g., user behavior, are statistically 

representative for a building. The number and variety of buildings is selected in such a way, 

that the buildings are representative for German office buildings with construction years 

between 1970 and now. The quality of individual sensors corresponds to quality applied in 

normal offices. Reason for this is that the developed methods should not require high quality 

sensors, since this would be a strong limitation for large scale deployment. 
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Finally for industrial manufacturing, the main requirement is sufficient temperature sensors 

that adequately capture the range of temperatures arising from temperature gradients in 

the heat treatment furnace, and for natural gas transmission accuracy and precision are the 

key parameters. 

2.1.2.3 Consistency and redundancy metrics 

 To describe the consistency of individual sensors and redundancy of sensor in networks 

different metrics are available but across the exemplified use cases similar approaches can 

be used. One approach is to a comparison with typical expected values, using a reference 

meter or traceable calibrated sensors to validate individual sensors. Another approach was 

to conduct a comparison with other sensors, in the same space, to detect inconsistencies in 

the measurements. 

2.1.2.4 Shortcomings in current metrics 

From a metrological perspective the different metrics mentioned in the above sections have 

certain shortcomings. The value of uncertainty is not always available, and there is often 

missing information related to the installation and initial calibration certificates. Also, the 

quality of deployed sensors is not always the best and there are no duplicate measurements 

available for verification. 

 

2.2 Data requirements in a sensor network 
 

This section of the guide discusses data requirements for sensor networks both for the 

complete lifecycle of a typical network node as well as for the complete sensor network. A 

typical sensor lifecycle may include steps of factory calibration, field calibration, development 

of multi-predictor calibration models (in case of multi-sensor nodes or soft sensor 

capabilities), deployment and continuous operation, periodic recalibration (e.g., machine 

learning (ML) retraining/continual learning), end-of-life or repurposing. Each of the stages 

have different data requirements and produces different insights into sensor performance 

from a metrological standpoint. Furthermore, extent of needed data is different for different 

sensor networks, influencing operational costs and loss benefits considerations. In the 

following subsections two use cases are used to describe data quality requirements. 

Air quality sensor networks enable continuous monitoring for reporting and facilitating the 

creation of spatial interpolations for key air quality parameters.  These networks can produce 

high-resolution maps of PM2.5 concentrations, offering valuable insights into air pollution 

distribution. Pervasive air quality monitoring can be used in both fixed and mobile nodes. 

The primary aim is to generate high-resolution spatial and temporal data on air quality Low-

cost sensor air quality monitoring network nodes can be calibrated effectively using a range 

of ML algorithms, from basic models to advanced techniques. 
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Use of sensor networks in industrial applications includes exploratory use of multi-wire 

thermocouples for possible in-situ drift detection. Each wire has a different Pt-Rh 

composition. Each pair of wires formed an individual thermocouple. In e.g., a 5-wire 

thermocouple, there are 10 possible pairs of wires and so 10 thermocouples., each with a 

different calibration drift rate. Approaches using data mining, physical modelling, and a 

combination of the two offer the possibility of deducing the calibration drift in-situ. 

 

2.2.1 Data requirements expected during the lifecyle of a sensor node in a 

specific sensor network application  

a) Because each phase of a sensor node lifecycle has different data requirements, it is 

important to understand and identify each of them. A typical lifecycle of a sensor node 

in an air quality sensor network includes the following phases: Integration of the 

sensor node: this phase  is the node fabrication step in which transducers, analog 

front end, microcontroller boards, charging board, battery, and data transponders 

are connected and integrated with microcontroller firmware to become a full featured 

sensor node.  

b) Characterization of sensor node response to chemical/physical pollutants in lab 

conditions: in this phase, information about sensor response model (linearity, 

sensitivity, limit of detection, response time, etc.) are collected. Typically, though they 

may depend to a certain extent from the specific sensor node, they are collected for 

a very limited number of devices (1-3) and generalized.  

c) Pre-deployment for calibration data gatherings: In this phase the sensor is collocated 

in field conditions together with a reference analyzer to provide a reference dataset 

for data driven calibration derivation. 

d) Calibration: it is the process of deriving a transducer model for translating raw data 

in actual pollutant amount of substance fraction or concentration data. This phase 

may include the factory calibration, field calibration (based on co-location with 

regulatory air quality monitoring stations) or the development of multi-predictor 

calibration models based on ML approaches. During operation, periodic field 

recalibration is recommended, which can be further used to determine the level of 

performance and/or stability over time. 

e) Deployment: in this phase the sensor node is installed in operational conditions for 

fulfilling actual data gathering. 

f) Data gathering and processing: this phase is the main part of the operative 

deployment and represents the actual data gathering, processing and transmission 

of the quantity measured data to operative control.  
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Many of these lifecycle phases will be part of other sensor networks used in different 

applications, such as industrial applications (see the brief description of the use case of 

sensor networks for industrial applications included in the introduction of this section). 

Data requirements expected during the lifecycle of a sensor node in a specific application of 

a sensor network. Factory calibration for air quality sensor node(s) (particularly, low-cost air 

quality sensor node that estimates particulate matter concentration, or gaseous pollutant 

amount of substance fractions) may consist of a simple zero check, such as one data point 

check or similar. This step usually has very limited data requirements, usually only a few data 

points.  

Field calibration serves to test the sensor in real word operating conditions. For air quality 

sensor field calibration, is usually conducted by collocating sensor nodes with reference 

instruments (e.g., regulatory automatic monitoring station), and simultaneously collecting 

data from sensor nodes and reference instruments. Collocation typically lasts few weeks 

(about three weeks is the recommended period in the literature), in order to capture enough 

dynamic range of the air quality parameters of interest. After a four or five-deployment period 

of the sensor node, it is recommended its recalibration by collocation with the regulatory 

reference instruments (maximum every six months during three weeks). Data requirements 

are the following: both the data from the sensor node being calibrated and the data from a 

reference are required to compute the calibration model. According to the literature, the 

most commonly used is a simple linear regression model. Data requirements for more 

complex calibration models could be more demanding. Quality of calibration is typically 

reported via the coefficient of determination (r2), the Root Mean Square Error (RMSE) and the 

Mean Absolute Error (MAE). The calibration models are considered valid if the sensor node 

is used in conditions that are similar to the conditions in which the sensor was calibrated. 

Use-case of air quality sensor network:  In this application, when taking the entire lifecycle of a 

sensor node into consideration, requirements are linked to the characterization of the 

sensor node response including.: 

a) Full response to at least the target pollutant(s) and primary interferents (i.e., forcers, such 

as CO and temperature) in at least two different quantitative levels are required. Typically, 

half an hour of 1Hz float readings for the raw data samples for each single exposure cycle 

characterized by a quantitative level forcers tuple, is needed. After this first step, to fully 

characterize the sensor node response, a Latin hypercube exploration of the combinations 

of the different quantitative levels of the forcers is recommended. Raw data sample for each 

transducer may be a single scalar value (i.e., electrode potentials for electrochemical sensors) 

or vector (see temperature modulation MOX sensors).  

b) In the deployment phase the single node is expected to output a stream of amount of 

substance fraction data with sampling frequency of 0.1 to 1Hz. Data tuple typically include at 

least two or three gas amount of substance fraction readings, and a measure of primary 
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environmental drivers (e.g., temperature and relative humidity). Depending on the final data 

application, wind direction and wind speed might be needed. Data coverage should exceed 

95%. The most important requirement is accuracy. In EU, reference guides do exist and 

measure the accuracy in terms of relative expanded uncertainty of the node in relevant 

ranges of concentrations. 

Use-case of a thermocouple sensor network contains simple data format in the form of 

temperature versus time. The time interval is highly variable but typically 30 seconds or 1 

minute, for time scales of between days and years. The scatter is generally low, within about 

0.2°C. There are generally multiple channels, each channel representing one thermocouple 

from two to more than 50. 

2.2.2 Typical and possible use cases of a specific sensor network 

Some typical use cases of air quality sensor networks include mapping of urban air pollution, 

which if the network is dense enough can be achieved by spatial interpolation. Data 

requirements in this example may be sufficient data coverage for obtaining representative 

averages, and sufficient spatial density, since kriging itself will introduce error if the estimate 

is not based on a sufficient number of data points. 

The networked devices are typically used in two deployment modes: mobile and fixed. Use 

cases for mobile deployment include pervasive emission monitoring (along the streets), 

pervasive air quality monitoring, personal exposure monitoring, etc. They differ in terms of 

data quality level and sampling frequency parameters. Personal exposure requires sampling 

frequency in the range of one sample per 30 sec or minute. Mobile monitoring with bicycles, 

cars, or buses requires several samples per minute (ca. 10), this allows for a sufficient spatial 

resolution. Coverage can be more stringent especially when pursuing single pass routes. 

Fixed deployments include pervasive air quality monitoring for high spatial resolution 

information integrating the regulatory grade network with low-cost sensor systems. Data 

requirements have already been described above. In both cases, sampling averaging 

procedures with raw sampling in the range of several samples per second will allow for 

implementation of noise reduction algorithms. 

Use case of industrial temperature sensor network: This use-case is primarily high-value heat 

treatment processes. This encompasses areas such as aerospace and automotive, where the 

sensors are required to exhibit high stability, i.e., low calibration drift, in harsh environments 

with temperatures up to 1500 °C for long time periods up to years. Here, physical modelling 

is being used in one of the potential approaches to deploy multi-wire thermocouples (the 

drift is mainly caused by vaporization of Pt and Rh oxides which results in changed local wire 

composition). Also, data mining approaches are being investigated, and hybrids of the two 

approaches. 

 



 
 

This project is supported by:   Page 15 

   
              

 

 

2.2.3 Extent of needed data in specific sensor networks 

In air quality monitoring, sensor network’s lack of data coverage can disrupt reporting. Some 

common problems can be met with mitigation strategies such as duplication of sensor 

nodes. Field calibration campaigns can fail to produce sufficient data to give confidence in 

derived calibration models. This can be mitigated by increasing the duration of the calibration 

effort. However, monitoring the uncertainty of sensors over their lifetime in such application 

scenarios is challenging. 

Air quality monitoring sensor networks can play a crucial role in administrative decisions. 

Accuracy is a mandatory requirement that can be attained to a certain extent with low-cost 

sensors in a trade off with costs.  While low-cost sensor systems remain an attractive solution, 

ensuring their accuracy through current state-of-the-art in-field calibration methods can 

significantly increase costs. Thus, while sensors themselves are affordable, achieving high 

accuracy requires additional investment. Several strategies are under study to allow for a 

feasible way to guarantee accuracy including multiunit (universal) calibration coupled with 

calibration transfer strategies [15], which reduces the number of samples used for 

(re)calibration of each unit. Another solution under study implies the use of continuous 

recalibration strategies using distant reference grade monitoring station data as reference, 

hence avoiding field colocation and saving on the logistics costs. However, long term and 

general figures on the attainable accuracy are rare in literature and unavailable for 

commercial systems. 

2.3 Data quality and validation: Methods, Processes, and Best 

Practices 
 

This section explores how to perform data validation, i.e., ensuring data is “fit-for-purpose” 

and of high enough quality. The exact definition of “high quality” can vary from case to case 

and there are many different approaches to defining, validating, and maintaining it. There is 

however no doubt that data quality is an important subject. In today’s world where Big Data, 

Artificial Intelligence (AI), Internet of Things (IoT), sensors etc., are becoming more and more 

common in society – not only for research and big companies – it is becoming more and 

more important that the vast amounts of data being collected and exploited, meets the 

quality required for its application. There are several risks involved in analyzing data as well 

as in drawing conclusions and taking decisions based on data of poor quality. For the creation 

of data quality requirements and data validation rules it is important to have a good 

understanding of the data itself. From here it is necessary to prioritize which data is most 

important and which characteristics of the data are most important. Subsequently, rules and 

metrics should be applied to data relevant for those, i.e. some rules might only be applicable 

to certain data. 
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2.3.1 Importance of data quality 

It is important to make sure data is of high quality due to risks of drawing wrong conclusions 

or taking the wrong decisions based on data of poor quality. Data quality needs to meet the 

needs and expectations of data consumers, creators, and other stakeholders. Risks are a 

large factor in assessing data quality from both business and health perspectives depending 

on the system, for example, in gas flow meter (or sensor) networks. 

In sensor networks errors can originate from many sources, e.g., architectural, data flow, 

edge devices, data transfer and processing, cloud, storage, and analysis. Possible correlations 

and relationships, both temporal and spatial, between sensors and measurements can also 

give rise to both challenges and insights. It is important to monitor any issues related to 

sensor data and address these as they arise. 

 

2.3.2 Variations of data quality dimensions 

The data quality dimensions vary from source to source both regarding the number of 

dimensions as well as the terminology itself for each dimension where the meanings are 

sometimes mixed between dimensions and overlap with each other. 

 

Table 1: Overview of selected sets of data quality dimensions. 

Source Dimensions Note

[16] 14 Hierarchy with two layers (5 in first layer, 14

in second layer)

[17] 21 Dimensions in total, from literature review.

[1] 24 Dimensions in total, from literature review.

[10] 8 Common dimensions. Mentions a few more.

[18] 4  Core  dimensions  

[19] 15 Separated in two points of view: inherent,

system dependent. Some dimensions are in 

both.

[20] 18 Grouped in 4 categories. Literature survey

[21] 20 Grouped in 4 categories. Literature survey

 

As seen in the table above there are many variations when it comes to data quality 

dimensions. A subset of the data quality dimensions is recurring and has commonly agreed 
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definitions such as accuracy and completeness, while others only appear in one or few 

sources. Furthermore, some dimensions vary in the way they are defined. Not all sources 

have time series or sensor networks as their focus and instead look broadly at data in 

general. The literature review of [1] has a focus on IoT related papers and it is thus relevant 

when looking at sensor networks. 

 

2.3.3 Existing approaches 

Several approaches exist for performing data validation and defining data quality 

requirements. Data quality dimensions are at the center of defining data quality 

requirements, and as seen above, there exist many different versions of these along with 

different approaches to work with data quality. Researchers and different types of 

organizations address different aspects, methods, approaches, and processes for 

performing data quality management in general. The following subsections will briefly 

describe some standardized processes for data quality management. These are also used as 

inspiration for some of the best practice approaches described later. 

2.3.3.1 ISO 8000-61 

The ISO 8000 series is a series of standards for data quality management. Specifically, ISO 

8000-61 describes an overall approach to data quality management. The core process cycle 

of ISO 8000-61 is based on the Plan-Do-Check-Act cycle of ISO 9000 which is a well-known 

series of standards on quality management systems.  

The ISO 8000-61 process consists of three areas where the first is “Implementation” 

consisting of a modified version of the Plan-Do-Check-Act cycle. The second and third areas 

are Data-Related Support and Resource Provision, which support the core process cycle. The 

full model can be seen in Figure 1. 
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Figure 1: ISO 8000-61 data quality management process. 

The Implementation process follows the cycle where Data Quality Planning is the first step, 

then Data Quality Control, Data Quality Assurance, and finally Data Quality Improvement 

before the cycle repeats. The Data-Related Support process enables the Implementation 

process with information and technology related to data management and the Resource 

Provision process improves the efficiency of the two other processes by providing resources 

and training services on an organizational level. Within the model described in Figure 1, there 

are 20 lower-level processes which will not be described here, but it should be noted that 

Requirements Management is the first of the lower-level processes and is where data 

requirements are defined. 



 
 

This project is supported by:   Page 19 

   
              

 

 

2.3.3.2 Methodology for data validation 

The Methodology for Data Validation from the European Commission describes a process’ 

life cycle to define and execute data validation (see  

Figure 2.  

Figure 2: Data validation process life cycle from [22] 

 

The cycle has four main phases and starts with the design of the data validation process. The 

Design phase includes the familiarization with the dataset (through the study of the datasets, 

variables, and their relations) and the assessment of quality requirements, as well as the 

definition of data validation rules. In the Implementation phase, the validation rules are 

described, formalized, tested, refined, and discussed by stakeholders. In the Execution 

phase, data is checked against the validation rules and the results are measured and 

quantified. The final phase is the Review phase where the validation rules are improved, 

based on the feedback from stakeholders, before the cycle can start over. 

Implement 

Validation rules are formalized 

Metrics for data validation rules 

Testing and evaluation of results 

Refinement of validation rules 

Review 

Analysis of feedback from 

stakeholders 

Identifying and prioritizing 

problems 

Design 
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2.3.3.3 DAMA International 

The Data Management Body of Knowledge (DMBoK) of DAMA International (a global Data 

Management organisation) [10] is concerned with everything related to data management. 

Data quality is one of the knowledge areas in the Data Management Framework. The DMBoK 

goes through what Data Quality Management is, what the activities are, as well as both the 

inputs for those activities and the outcomes. It also describes different tools, techniques, and 

metrics. It gives some examples of rules and metrics but is mostly concerned with 

organizational aspects, the framework, procedures, people, etc. around these.  

Thus, in the context of metrology, DMBoK is too high level but the activities described therein 

are relevant for best practices in defining data quality requirements and working with it in 

general. The activities mentioned include defining what high quality data is, defining the 

critical data and business rules, and doing an initial quality assessment.  

The DMBoK also highlights the Plan-Do-Check-Act cycle as the Data Quality Improvement Life 

Cycle (see Figure 3. This cycle is used to improve data quality and it starts by scoping and 

prioritizing data issues in the planning step. Then in the “Do” step, root causes of issues are 

addressed and a plan for continuous monitoring is made. The “Check” step is about actively 

monitoring data quality as it is measured against requirements. If data quality falls below 

accepted levels additional actions must be taken to reach acceptable levels. The “Act” stage 

involves activities for addressing and resolving emerging data quality issues. When issues are 

assessed and solutions proposed, the cycle restarts.  

 

Figure 3: Plan-Do-Check-Act cycle from [10]. 

 

2.3.4 Defining data quality metrics 



 
 

This project is supported by:   Page 21 

   
              

 

 

A data quality requirement or a data quality rule needs to be translated into a metric that 

can be measured. Ideally, the metric is presented in a machine-interpretable form to enable 

its processing by automated systems [9]. Within each data quality dimension, several 

different metrics can be defined. Defining metrics is about figuring out how to quantify or 

how to measure a certain requirement. Below are a few examples of rules and corresponding 

metrics. Each example uses a data quality dimension as the foundation and exemplifies a 

rule within the given dimension and a metric for calculating it. The thresholds in the examples 

are randomly chosen. In a real-world scenario rules, metrics, and threshold values would 

depend highly on the use case. 

Summary of defining metrics (continued from the defined requirements): 

1. Make sure the requirement or rule is quantifiable and measurable 

2. Identify the variables for the metric 

3. Identify relationships between variables 

4. Adjust to give the correct output format or unit  

Example 1 

Dimension: Completeness 

Rule: Missing data: No less than 95% of data points should be present in the time series 

Metric: 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑛𝑒𝑠𝑠 [%] =
actual number of rows 

theoretical number of rows
× 100 

Description and example: Given a start and end time, as well as a frequency of 

measurements for a given sensor, the theoretical number of rows can be calculated. For 

example, one measurement per minute from 1st April to 30th April (both included), will give 

43200 data points, theoretically. If for example the actual number of data points is 42000 it 

means 1200 data points have been lost and gives a completeness of ~97.2% and the 

completeness lives up to the 95% requirement. (The scope of this rule is a time series from 

one sensor, but its scope could easily be extended to a sensor network collecting data from 

multiple sensors). 

Example 2 

Dimension: Accuracy 

Rule: No more than 1% of values in a time series should be beyond absolute threshold for 

reference sensor 

Metric: 𝑠𝑒𝑛𝑠𝑜𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [%] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑏𝑒𝑦𝑜𝑛𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

number of values in time series
× 100  

Description and example: Taking a time series of sensor values and comparing them to the 

time series of a reference sensor (the two time-series should of course be aligned (i.e., same 

start and end time, same measurement frequency, etc.). With a defined threshold of, for 
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example, ±1°C, the difference between a sensor value and its corresponding reference value 

cannot go above or below the threshold. The rule then says to count the number of values 

exceeding the threshold and see if this is more than 1% of the total number of values in the 

time series. 

Example 3 

Dimension: Timeliness or Currency 

Rule: The interarrival time between sensor measurements cannot exceed 30 minutes. 

Metric: 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 [𝑀𝑖𝑛𝑢𝑡𝑒𝑠] = 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑛 − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑛−1  

Description and example: Depending on the focus, this rule can both be related to timeliness 

or currency. Timeliness can be viewed as the time from sensor measurement to it being 

stored in the database and then made available to the user. This rule checks the time passed 

from the most recent measurement and the measurement immediately before that. If this 

duration is too long it might violate the timeliness. This could be due to long transmission 

time between the edge device, gateway, and server. If data quickly becomes outdated due to 

quick changes in the environment of the sensor, a long time span between measurements 

might also violate currency requirements since the latest measurement has been outdated  

before the  next one arrives. Also, if the new measurement arrives late, it might already be 

outdated. 

 

2.3.5 Maintaining data quality 

The cyclic nature of the processes mentioned in a few of the previous sections is an important 

aspect of maintaining data quality, since it is a continuous process and not a one-time project. 

Data is continuously generated, which means there is constantly new data that needs to be 

validated to make sure the quality is good enough. This is especially the case in sensor 

networks, where large amounts of data can be gathered at a high frequency. Furthermore, 

there can be new uses of the data, or the requirements can be changed. Both affecting the 

requirements and process.  

Sections 2.3.3 and 2.3.4 describe how to get from a dataset to a set of requirements and 

from there how to define metrics for these requirements. The basis for these can be the data 

quality dimensions. The steps mentioned can be carried out whenever requirements change, 

new issues arise, or new uses are found for the data. Furthermore, it is beneficial to follow 

the common or standardized approaches as described in previous sections. 

Not only is it beneficial to use a cyclic process for updating requirements and maintaining 

data quality, but it is also desirable to implement an automatic process for executing the 

rules on data. It is infeasible to do it manually every time new data is generated or to go back 

and do it on historic data whenever requirements change. An automatic process becomes 
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even more crucial when considering sensor networks and the amount of data which can be 

generated.  

Maintaining data quality can also be structured by both defining the most important data 

quality dimensions and defining critical data. In the use cases used as examples throughout 

the guide the most important characteristics of data are completeness and accuracy. In 

addition, it is important that the data is traceable (traceability) and not outdated 

(timeliness/currency). Choosing the most important characteristics makes it easier to focus 

on the most important requirements. The same is the case for defining critical data. If data 

can be categorized like this, stricter rules can be put on critical data and more lenient rules 

on less important data, making the validation task lighter and avoiding setting strict rules for 

all data when only a subset of data has such strict requirements. 

 

2.3.6 Global calibration models for air quality sensor 

Low-cost air quality (AQ) sensor networks introduced a promising paradigm shift, going from 

traditional monitoring equipment, which has high accuracy but also associated high costs of 

initial installation and maintenance, to a much more cost-effective solution of low-cost 

compact devices with IoT features integrated into a network. This shift can, due to cost-

effectiveness, increase spatial resolution compared to traditional monitoring.   

However, for these low-cost devices to reach sufficient accuracy to be deployed as indicative 

measurement devices in AQ monitoring networks, the calibration process needs to be 

periodically repeated. This frequent calibration has as purpose to mitigate the problem of 

sensor drift. Moreover, if the calibration location and deployment location are similar it can 

also eliminate the concept drift, which is also known as calibration location-deployment 

location mismatch (De Vito et al 2023, Topalovic et al 2019). These additional efforts, 

especially needed when accuracy is a concern, can significantly contribute to overall costs, 

which hinders and complicates massive deployment.   

 

One possible solution for reducing the cost of calibration is to perform global calibration 

models (GCMs). GCMs are used when multiple sensor units, typically originating from the 

same fabrication process, need to be calibrated in a batchwise manner. GCMs are often 

useful for low-cost sensors with a tendency towards high inter-device variability [24]. In this 

approach a calibration model is built with the matrix of responses of multiple sensor units 

(i.e., a subset of network nodes) exposed to the same calibration conditions. The resulting 

global model is then applied to new uncalibrated replicas after being optimized to maximize 

prediction accuracy in new replicas  [25]. By transferring the GCM to the complete network, 

the complexity of calibration/recalibration campaigns and subsequent related efforts on 

network quality assurance are significantly reduced.   
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Here recently obtained results by several research groups that examine GCMs when applied 

to several different types of sensors used in air quality monitoring are summarized. In 

addition to targeting different pollutants, these global calibration approaches also utilize 

several different GCMs, such as linear global calibration model for particulate matter (PM) 

equivalent mass concentration of PM2.5 and PM10 (De Vito et al, 2023), GCMs that target 

different gaseous pollutants measured by electrochemical sensors (namely limited quadratic 

regression calibration models for carbon monoxide (CO), neural network models for nitric 

oxide (NO), hybrid models for nitrogen dioxide (NO2) and ozone (O3) (Malings et al, 2019), 

machine learning (ML)-based GCMs for NO2 and NO low-cost sensors [26]), by metal oxide 

(MOX) gas sensors like the GCMs for temperature-modulated MOX CO gas sensors (Miquel-

Ibarz et al, 2022), parallel machine learning based calibrations for PM2.5 sensors [26] and 

deep learning based calibration for Metal Oxide Semiconductor (MOS) gas sensors. An 

example of the latter is found in [28], where gas mixtures including seven target Volatile 

Organic Compounds (VOCs: acetic acid, acetone, ethanol, ethyl acetate, formaldehyde, 

toluene, and xylene) and two background gases (CO and hydrogen), as well as the relative 

humidity, which was analyzed by using MOS gas sensors (SGP40, Seinsirion AG, Switzerland). 

 

Appendix B gives an overview of global calibration approaches as applied by several research 

groups (De Vito et al., 2023, Malings et al., 2019, Miquel-Ibarz et al., 2022, [26], [28]. 

Calibration models that were used range from simple linear regression models to deep 

neural networks. Majority of the examples are derived from in field collocation campaigns, 

while two examples for VOCs [28] and CO (Miquel-Ibarz et al., 2022) are derived using data 

obtained in laboratory conditions. Model features for simple linear models include low-cost 

sensor signals, typically alongside meteorological parameters. Relative humidity (RH) is the 

meteorological parameter included in the models for PM, and RH and temperature (T) are 

the parameters added to the hybrid models for gaseous pollutants in Table 2 (note that here 

linear models are only used for large concentration that are near the ones observed during 

training). For more complex models, the feature set often includes all environmental signals 

produced by the sensor. Most common performance metrics are the root mean square error 

(RMSE), mean absolute error (MAE) and the coefficient of determination R2 (between the 

calibration model prediction and reference concentration) [27]. 

 

2.3.7 Using data quality metrics in the design of a multi-wire thermocouple 

In this section we describe an example where data quality metrics are used to inform the 

design of a sensor network, here taking the form of a multi-wire thermocouple used to 

measure temperature in high value manufacturing applications. 

A thermocouple is a device for measuring temperature. A thermocouple comprises two 

dissimilar metal wires joined together at one end to form a measurement junction. A voltage 

is developed across the wires, which is measured at the open end and is a function of the 
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temperature gradient between the two ends. Each wire develops an electromotive force 

(emf) in a temperature gradient, which is the thermoelectric effect. For any small length of 

wire, this emf is the product of the Seebeck coefficient (defined as the voltage generated per 

unit temperature change along the wire, which is characteristic of a given metal) and the 

temperature difference from one end of that length of wire to the other. 

Thermocouples made of platinum (Pt) and its alloys with rhodium (Pt-Rh) are widely used in 

high value manufacturing applications as they offer relatively high thermoelectric stability in 

comparison with other thermocouples. The principal cause of instability, and therefore 

calibration drift, is the vaporization of platinum and rhodium oxides from the wires, which 

causes a local change in composition, and hence a local change in Seebeck coefficient. This 

in turn changes the emf generated in a given temperature gradient, which results in a 

temperature measurement error because the measured emf is different to the emf that 

would have been generated during the original calibration for the same temperature 

gradient. 

The magnitude of the effect depends on the Pt-Rh composition of the wire. A Pt-30%Rh wire 

drifts more slowly than a Pt-6%Rh wire because the same quantity of rhodium lost in a given 

time interval is a smaller proportion of the total amount in Pt-30%Rh. A thermocouple 

assembly comprising of several wires allows measurements to be made simultaneously by 

different thermocouples defined by different pairs of wires. For example, a 5-wire 

thermocouple with the widely available compositions Pt-0%Rh, Pt-6%Rh, Pt-10%Rh, Pt-

13%Rh and Pt-30%Rh offers 10 possible pairs of wires and so 10 thermocouples.  

Since the different thermocouples have wires in common, e.g., a Pt-6%Rh versus Pt-30%Rh 

thermocouple shares a Pt-6%Rh wire with the Pt-6%Rh versus Pt-13%Rh thermocouple, etc., 

there is the possibility to use the resulting correlations between the measurements made by 

the thermocouples in the ensemble to provide information about calibration drift. 

Additionally, there is the possibility to use the measurements to provide a measurement of 

temperature that is ‘better’, e.g., has lower uncertainty, than that provided by any individual 

thermocouple. These possibilities, which are the subject of on-going research and 

development, are the motivation for the so-called multi-wire thermocouple. The multi-wire 

thermocouple is an example of a sensor network in which the individual sensors 

(thermocouples) are co-located and are measuring the same measurand (the temperature 

at the measurement junction). 

Various methods are being studied for using the data recorded by such a multi-wire 

thermocouple to estimate the drift of the individual thermocouples and to obtain an estimate 

of the (common) temperature measured by the thermocouples and its associated standard 

uncertainty. Here, a study is made of the influence on the measurement results obtained 

from one of those methods from the choice of the design of the multi-wire thermocouple in 

terms of the number of wires and the compositions of the wires. The influence is assessed 
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in terms of various data quality metrics, including the difference between the estimate of 

temperature and its known value, the uncertainty of the estimate of temperature, an 

estimate of the magnitude of the noise in the measured emf data, and the cost of fabricating 

and calibrating the multi-wire thermocouple. An optimal design is one that balances the 

quality of the information delivered against the cost of obtaining that information. 

For illustration, data is recorded by a multi-wire thermocouple comprising of the seven wires 

Pt-5%Rh, Pt-8%Rh, Pt-10%Rh, Pt-13%Rh, Pt-20%Rh, Pt-30%Rh, and Pt-40%Rh. The data was 

obtained while the thermocouple was immersed in a calibration artefact (a cobalt-carbon 

fixed point with a melting temperature of 1324.29 °C), enabling periodic re-calibrations of all 

21 thermocouples and hence yielding direct measurements of thermocouple drift in situ [30]. 

The data comprised measured values of emf for each thermocouple made of two different 

wires. Data was recorded over a time period of about 1,520 hours, but the study focused on 

the time period between about 200 hours and 650 hours with data at the start of the time 

period omitted as in that early period there can be mechanisms other than evaporation that 

cause the observed calibration drift. 

For each design of the multi-wire thermocouple, the following measurement results are 

calculated: the estimates 𝑇𝑖, 𝑖 = 1, … , 𝑁, of the known temperature 𝑇∗ = 1324.29 ℃, the 

standard uncertainties 𝑢(𝑇𝑖), 𝑖 = 1, … , 𝑁, of those estimates, and estimates 𝑠𝑖, 𝑖 = 1, … , 𝑁, of 

the standard deviations of the noise in the measured values of the emf. These results are 

then summarized by the following data quality metrics: 

𝑀1 = |
1

𝑁
∑(𝑇𝑖 − 𝑇∗)

𝑁

𝑖=1
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1
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1

𝑁
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𝑁

𝑖=1

. 

Additionally, the cost of fabricating and calibrating the multi-wire thermocouple is calculated 

using the following information (correct at time of writing): wire prices (per metre) are £147 

(Pt-0%Rh), £176 (Pt-10%Rh), £186 (Pt-13%Rh, estimated), and £243 (Pt-30%Rh). Each wire is 

generally two meters long, and the cost increases linearly with rhodium content as rhodium 

is more expensive than platinum. A linear interpolating function of wire cost with rhodium 

content is considered appropriate to calculate the cost of other wires. The cost of calibrating 

a thermocouple is approximately £1000, independent of thermocouple type, and would be 

a negligible amount for several thermocouples in a multi-wire assembly. 

A method for drift estimation is applied to the data corresponding to the complete multi-wire 

thermocouple comprising all seven wires and made up of 21 individual two-wire 

thermocouples. Additionally, the method is applied to each multi-wire thermocouple formed 

by omitting a single wire, which reduces the number of individual two-wire thermocouples  
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to 15. Table 2 gives the values of the various data quality metrics for each design of multi-

wire assembly, including the cost of fabrication and calibration. 

For the cases when the wire Pt-20%Rh or Pt-40%Rh is removed, the closeness of fit between 

the data and the model is better, e.g., as measured by 𝑀3 in Table 2 but this might be a sign 

of overfitting of the model to the data. Removing these wires, and also the  Pt-30%Rh wire, 

has an impact on the quality of the temperature estimates as measured by the metrics 𝑀1 

and 𝑀2 (Table 2), suggesting that the estimates of the temperature in these cases are poorer 

overall. For these cases, the standard uncertainties of the estimates of temperature are also 

noticeably different than for the other cases (metric 𝑀4 in Table 2). The small values for the 

standard uncertainties when the wire Pt-20%Rh or Pt-40%Rh is removed is likely linked to 

the smaller estimates of the standard deviations of the noise.  

For these reasons, it is concluded that it is important to include the wires Pt-20%Rh, Pt-

30%Rh and Pt-40%Rh (which coincidentally are least affected by calibration drift) whereas 

removing one of the other wires has little impact on the results. In terms of cost, the resulting 

multi-wire thermocouple assemblies are more expensive to fabricate and calibrate. The 

results suggest that an ‘optimal’ choice for removing a single wire is to remove the wire Pt-

13%Rh. 

Table 2 Values of data quality metrics for different designs of multi-wire thermocouple, including 

a design with all the wires and designs with an individual wire removed. 

Wire removed 𝑴𝟏/℃ 𝑴𝟐/℃ 𝑴𝟑/𝛍𝑽 𝑴𝟒/℃ Cost/£ 

None 0.018 0.078 5.223 0.314 3,839 

Pt-5%Rh 0.024 0.090 5.941 0.458 3,521 

Pt-8%Rh 0.018 0.077 5.931 0.389 3,501 

Pt-10%Rh 0.019 0.078 5.978 0.389 3,487 

Pt-13%Rh 0.023 0.081 5.916 0.393 3,467 

Pt-20%Rh 0.030 0.090 2.850 0.187 3,420 

Pt-30%Rh 0.063 0.129 5.976 0.594 3,353 

Pt-40%Rh 0.099 0.207 1.045 0.122 3,286 
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 Metrological Traceability 
 

3.1 Methods and Guidelines for In-Situ Self-Calibration or Co-

Calibration with Reference Sensors in a Sensor Network 
 

Establishing the traceability of measurements to the international system of units (SI) in 

sensor networks (SN) is essential from a metrological standpoint [26]. One of the key aspects 

in this regard are traceable calibration operations, which ensure the link from a 

measurement to its appropriate SI unit via an unbroken chain of calibrations [27]. 

Conventional calibrations, which are carried out in specialized laboratories, involve the 

comparison of the values delivered by the device under test with the measurement values 

provided by a reference standard. A reference standard can be another device or physical 

artefact with known properties or quantities derived using fundamental physical constants. 

In the case of a sensor, another reference sensor with known uncertainty can be used as a 

reference sensor. Such a calibration is typically very expensive and not cost-effective, 

particularly for low-cost sensors. The deployment of sensor networks in hard-to-reach 

locations and carefully controlled environments further reduces the feasibility of regular 

laboratory calibrations. 

In-situ calibration is a common work-around in such cases. In this context, in-situ refers to 

the characterization of the measurement model of the sensor and its uncertainty, i.e., its 

calibration being performed at the location of its deployment without having to disassemble 

and transport it to a calibration laboratory or factory [28]. For this purpose, a transportable 

device with known accuracy can be used. A co-calibration, on the other hand, can be 

considered as a special case of an in-situ calibration where nearby sensors already present 

in the network are used as reference devices [29]. In the case of co-calibration, the reference 

value itself may have to be estimated at the position of the device under test using 

appropriate interpolation and sensor fusion techniques. 

The report provides an overview of currently available methods to (self-/co-)calibrate sensors 

within a sensor network and assesses the suitability for metrological use-cases. The insights 

from the literature review are joined with the discussions made with the project use-cases to 

provide guidelines and practical considerations within real-world SN.  

3.1.1 State of the Art 

An excellent review on in-situ based co-calibration in sensor networks is provided by Delaine 

et al. [28]. Macro-calibration and blind-calibration are two concepts that are closely related 

to in-situ and co-calibration. Macro-calibration refers to the calibration of an entire sensor 

network based on its total response without having to calibrate each individual sensor node 
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[30]. Blind-calibrations [31] refer to the steps taken to achieve homogeneous behaviour of 

all sensor nodes by possibly enforcing the dominant influence of sensors that are a priori 

known to provide sufficiently good (calibrated) measurements. This is typically done in cases 

where there are no reference signals/sensors, or other sources of ground-truth information 

about the measured process. A consolidated review of algorithms relevant to blind- and 

macro-calibrations as well as a consensus-based extension to the distributed case can be 

found in [32]. An extension of the algorithm with uncertainty evaluation as well as a treatment 

of traceable co-calibration was provided in [33]. 

3.1.2 Guidelines and Considerations in Real-World Sensor Networks 

Based on discussions within the project consortium and information from the literature 

review, guidelines and practical considerations for the application of co-calibration methods 

in real-world sensor networks are provided. In addition to some general remarks, these 

guidelines cover generic scenarios of prototypical sensor network configurations. The 

scenarios were chosen based on their relevance to the use cases within the project. Each 

scenario is described, relevant co-calibration methods are presented, and their applicability 

discussed. Concerning the co-calibration methods, the approach, strengths, weaknesses, 

and complexity of the transfer behaviour are described. 

3.1.2.1 General Remarks 

It is encouraged that the data from the sensor network is available/retrievable in a structured 

and processing-friendly way, e.g., REST, JSON, HDF5, and SQL. If traceability of reference 

sensors is of importance, this data also needs to include information about the measurement 

uncertainty. Moreover, it is important to provide a way to align and relate datapoints, 

meaning that, i.e., measurement data in sensor networks are timeseries of datapoints and 

the timestamps are based on the same timescale across the network. Ideally, metadata (e.g., 

sensor identifier, location, unit, calibration status, etc.) is available alongside the (numerical) 

measurement data to simplify the selection of reference sensors and facilitate automation 

at a later stage.  

3.1.2.2 Detecting Sensors to be Calibrated 

As with physical sensors, the intervals at which a co-calibration needs to be performed also 

needs to be determined. Such intervals depend on the quality of sensors involved, the 

application for which they are used, and the accuracy required. The interval can be fixed 

based on a particular standard or it can be flexible, relying on an online monitoring of the 

constituent sensors [34]. 

Sensor transfer behaviour: The transfer behaviour of a sensor refers to the relationship 

between the physical quantity being measured and the value provided by a given sensor. The 

relationship can usually be expressed by means of a parametric expression. The most 

common choice is a linear affine model, i.e., the output 𝑦 and input 𝑥, are linked by 𝑦  =  𝑎 ∗

𝑥 + 𝑏  with potentially multivariate gain 𝑎  and offset 𝑏 . More complex transfer behaviour is 
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rarely encountered. Another general observation is the lack of uncertainty evaluation / 

sensitivity analysis and with that missing traceability of the estimated transfer behaviour. An 

understanding of the transfer behaviour of a sensor is indispensable when measuring time-

varying quantities requiring the estimation of dynamic measurement uncertainties. 

3.1.2.3 Scenario A: Dense Sensor Network with Stationary Sensors 

A sensor network can be called “dense” if the specific quantity of interest does not change 

much between (spatially) neighbouring sensors. This can be leveraged to obtain reference 

values from the network. [35]The review paper by Delaine [28] contains a list of co-calibration 

methods are designed for such networks. For example, Stankovic et al. [32], [36], [37] 

proposed a consensus-based calibration algorithm for a set of co-located sensors. 

Computation complexity in this case is rather low due to a gradient-decent optimization 

approach. It estimates the gain and offset of a linear affine transfer behaviour. Weight factors 

can be used to include only traceable reference values into the calculations. Uncertainty 

evaluation is not covered in the original papers but is straightforward and was added in [33], 

but calibration performance on transient signals could be limited.  

Kizel et al. [38] proposes a node-to-node calibration approach, assuming pairwise co-

location. The in situ calibrated sensor therefore form a chain of calibration dependencies. In 

each link of this chain the gain and offset are estimated using least square regression 

methods. Sensitivity analysis of the estimated parameters is provided, although this is not an 

uncertainty propagation in the strict sense. Moreover, the influence of the chain length onto 

the “uncertainty” is investigated.  

Gruber [33] assumes the availability of a virtual reference for the sensor to be calibrated. In 

a simple case, this would come from an appropriately robust mean of co-located sensors. 

Uncertainty of the virtual reference is directly included in the parameter estimation process 

by following a Bayesian approach, which also leads to probabilistic distributions of the sought 

parameters of a linear affine model with an error term. The method provides traceable 

results according to the definition in the VIM.  

3.1.2.4 Scenario B: Sparse Sensor Network with Stationary Sensors 

Within a sparse sensor network, the specific quantity of interest can change considerably 

between neighbouring sensors. It is therefore necessary to fill potential information gap with 

model-based approaches. Examples of such sensor networks can be found in energy 

networks [39] and chemical production plants [40]and smart buildings [41]. A generic 

approach to handle such sensor networks is to make use of the methods listed in scenario 

A. This is done by first applying an interpolation model that quantifies the available knowledge 

about the spatial, temporal, scientific or technical relations, e.g., a Gaussian process 

interpolation that also takes correlations in the values into account [42]. Another common 

approach involves performing a spatio-temporal k-nearest-neighbour gradient-model 

interpolation [29]. 
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Moltchanov et al. [43] and Tsujita et al. [44] propose simple but effective heuristics to find 

subsets of urban environmental pollution monitoring data that allows to be used for in situ 

calibration. While Moltchanov assumes that nightly measurement values are almost equal 

due to a lack of anthropogenic influence, Tsujita concludes from almost equal measurements 

of reference stations across the city that the overall distribution is uniform. The selected data 

is then used to estimate the transfer behaviour using least-squares techniques. No 

uncertainty evaluation was given but could be added according to [45] or Monte Carlo 

approaches. Lin [46] proposes to regularly bring a reference sensor in the vicinity of the 

sensor for a specified time duration to be in-situ calibrated (opposed to a classic calibration, 

which brings the sensor to the (laboratory) reference).  

Further interesting ideas are found across the literature. For gas sensors, Sun et al. [47] 

develops a sensor that periodically can be inserted into / surrounded by a known gas mixture, 

providing known and traceable reference measurements. Bychkovskiy et al. [48] does not 

directly compare time-series or datapoints, but the histograms of periods in time that are 

highly correlated between two sensors. Martin et al. [49] allows for additional model terms 

(e.g., dependency on temperature or humidity) and only includes them, if they increase the 

transfer model performance.  

3.1.2.5 Sparse Sensor Network with Mobile Sensors and Stationary Reference Sensors 

Another prototypical situation is the use of mobile sensors (e.g., mounted on a vehicle). The 

sensor density of such networks is typically sparse but offers the possibility of a sensor 

“rendezvous” – a limited subset of datapoints that fulfils the properties of a dense sensor 

placement. Based on the review paper by Delaine [28], the following co-calibration methods 

are designed for such networks. The mobility is usually leveraged by search for temporary 

co-location or “rendezvous” of sensors in the data.  

Miluzzo et al. [50] propose that uncalibrated nodes/sensors can ask for nearby reference 

readings. These readings are then distance weighted to obtain a virtual reference reading to 

estimate the offset (but no gain). Although no uncertainty evaluation is carried out, doing so 

is likely to be straightforward using the GUM LPU (law of propagation of uncertainty). 

The approach chosen by Hasenfratz et al. [51] and Saukh et al. [52], [53] is rendezvous based. 

Rendevouz in the context of mobile sensor nodes refers to a situation in which two or more 

sensors are in the temporal and spatial vicinity of each other, i.e., in a given spatial location 

at the same time. In contrast to [50], the datapoints selected for the in-situ calibration are 

age weighted, reducing the influence of older rendezvous. The parameter estimation is 

carried out using least square regression. Although a RMSE-value with regard to the 

(simulated) ground truth is provided, no uncertainty evaluation is documented. A very similar 

approach is proposed by Maag et al. [54]. 

3.1.3 Applicability To Real-World Use-Case of Air-quality Monitoring Networks 
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Sensor networks used for air-quality monitoring consist of many low-cost sensors with a 

significant number of mobile nodes and are an ideal use-case for the application of methods 

for re-calibration, self- and co-calibration developed as part of earlier tasks. Low-cost gas 

sensor systems can potentially increase spatial and temporal resolution in air quality 

monitoring networks in smart cities, but suffer from cross-sensitivities, interference with 

environmental factors, and ageing. These problems are compounded as these sensors 

usually operate under non-static conditions. The main requirement of this task is the 

availability of methods for uncertainty-aware sensor fusion, drift detection, dynamic 

uncertainty estimation, and optimized traceability paths. Given the large-scale use of low-

cost sensors, e.g., 600 sensors distributed around the Parisian region [55], co-calibration has 

the potential to play a significant role in this use case. Moreover, a large majority of the 

sensors (500) in the aforementioned network are placed on postal service vehicles and don’t 

have a fixed location as a consequence. The co-calibration methods developed will have to 

take this fact into account by potentially adapting the methods outlined in the preceding 

section. 

3.1.4 Summary 

The need and current state of in-situ calibration in sensor networks are described. To 

formulate guidelines and practical considerations for the application of such methods in real 

sensor networks, three prototypical sensor network scenarios are proposed. For each 

scenario, multiple promising and existing co-calibration methods are presented. The 

advantages of these methods regarding metrologically sound results are briefly discussed 

for each method, revealing a lack of uncertainty evaluation in many methods. Moreover, 

general remarks are provided that enhance the data quality of suitable datasets and prepare 

the automation of in-situ calibration methods. Finally, the applicability in rea-world use cases 

were discussed for three generic scenarios corresponding to common sensor network 

configurations: dense networks with stationary sensors, sparse networks with stationary 

sensors and sparse networks with mobile sensors and stationary reference nodes.  The latter 

of the three aforementioned scenarios was further discussed for the specific case of air-

quality monitoring networks. It was shown that the methods for co-calibration and in situ 

calibration must take the mobility of individual sensor nodes into account. The use of low-

cost sensors in such networks further increases the need to develop methods for 

uncertainty-aware sensor fusion, drift detection, dynamic uncertainty estimation, and 

optimized traceability paths. 
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3.2 Methods for Uncertainty-Aware Sensor Fusion in Dynamic 

Measurements 
 

A dynamic measurement can be defined as one where the physical quantity being measured 

(the measurand) varies with time and where this variation may have a significant effect on 

the measurement result (the estimate of the measurand) and the associated uncertainty  

[56], [57]. Typically, sensors used in industrial measurements have been calibrated under 

static conditions. In practice, however, the measurements are usually performed under 

dynamic conditions, i.e., the measured signal is non-stationary or transient. The use of a 

sensor in a different mode from that in which it was calibrated can significantly affect the 

reliability and uncertainty of the measurement result.  

A measurement system necessarily has a finite response-time to a change in the physical 

quantity that is being measured, i.e. the measurand. In case the system - in our case a sensor 

– responds much faster than the rate at which the measurand changes, it is possible to 

directly analyze the measurement and compute the uncertainty by the conventional static 

means as defined by the guide to the expression of uncertainty in measurement (GUM) [58]. 

On the other hand, if the measurement system responds slowly to the rate of change of the 

measurand, the uncertainty determined using conventional static means is no longer 

accurate. In such cases the measurement uncertainty itself may be time-dependent [59].  

3.2.1 Sensor Fusion 

Sensor fusion can be defined as “the combining of sensor data or data derived from sensor 

data such that the resulting information is in some sense better than would be possible when 

these sources were used individually” [60]. In the context of sensor networks, information 

obtained from multiple sensors, often measuring different physical quantities, can be 

combined based on a mathematical model to generate values that cannot be directly 

measured. For instance, a common application of sensor fusion is to capture industrial 

processes in the form of a digital twin, i.e. virtual representations of sensors and sensor 

networks in the fields of discrete manufacturing and process engineering [61], [62]. In 

addition to measuring quantities that aren’t measurable by conventional means, combining 

information from multiple sensors can [63] 

• Increase the quality of data,  

• Increase reliability and, 

• Increase the coverage area of a measured quantity. 

From the point of view of metrology, ensuring the traceability of the resulting “fused” or 

derived measurements by appropriately propagating the uncertainties is of utmost 

importance. In this report, a brief review of methods and literature relevant to sensor fusion 

will be explored with an emphasis on he added challenge posed by dynamic measurements 
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and calibration. The results are informed by a survey conducted among the use case owners 

to address specific issues pertaining to the use of sensor fusion in their respective areas of 

expertise. 

 

3.2.2 State of the art 

 

3.2.2.1 Sensor Fusion 

Over the years, a substantial amount of research in sensor fusion has focused primarily on 

the methods and their applications in diverse areas [64], [65], [66]. In comparison, literature 

on the incorporation of metrological principles in sensor fusion is limited. This problem is 

compounded when seeking sources relevant to sensor networks. An exception to this rule is 

the method to compensate for outliers while reducing the effect of sensor failure and drift in 

the case of homogeneous sensor fusion, which was presented in [61].  A general review of 

sensor fusion (referred to here as multisensory fusion) and consensus filtering was 

presented in [67]. Consensus filtering refers to a distributed algorithm that allows the nodes 

of a sensor network to track the average of all their measurements [68] in such a way that 

the information exchange only happens between neighbouring nodes. Consensus filtering is 

in fact a dynamic version of the average consensus algorithm which allows a network of 

agents (in our case, sensors) to agree on the average of a set of initial values [69].  

Perhaps the most widely used method in sensor fusion is the Kalman filter and its extensions 

and derivatives [70]. The Kalman filter is used to produce estimates of unknown quantities 

over time using measurements from multiple sources along with statistical noise. The 

estimate thus produced is better than one obtained from a single measurement. The Kalman 

filter recursively updates the value of an unknown quantity under observation by combining 

the predicted value based on its previous state and a physical model describing its dynamic 

evolution along with measurements provided by sensors. The Kalman filter is an established 

method in sensor fusion and has given rise to variations such as the extended and unscented 

[71] Kalman filters in order to model nonlinear systems. 

3.2.2.2 Dynamic Measurements 

A measurement is considered to be a dynamic measurement when the value of the quantity 

of interest varies over time [56]. While the guide to the expression of uncertainty in 

measurement GUM/GUM-S1 [72], [58] provides methods for measurements that are 

constant in time, a dearth of similar techniques  was identified for dynamic measurements, 

particularly in the context of traceability [57]. Traceability is typically established via a 

calibration of the measurement device or sensor and, in the dynamic case, must be 

performed under appropriate conditions. The resulting methods must also be consistent 

with the static case. As measurement systems for dynamic measurements in metrology can 

often be assumed to be linear and time-invariant (LTI), a sizable body of research is focused 
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on developing methods for such models [73], [74], [75]. Typically, the sensor output is 

represented by a digital finite or infinite impulse response (FIR/IIR) filter such that the sensor 

output 𝑦[𝑛] at a discrete time point 𝑛 is related to the physical stimulus 𝑥[𝑛] by 

𝑦fir[𝑛] = ∑ 𝑏𝑚𝑥[𝑛 − 𝑚]  

𝑀

𝑚=0

           𝑦iir[𝑛] = ∑ 𝑏𝑚𝑥[𝑛 − 𝑚]

𝑀

𝑚=0

− ∑ 𝑎𝑙𝑦iir[𝑛 − 𝑙]

𝐿

𝑙=1

. 

Equivalently, the sensor behaviour can be represented by the transfer function 𝐻(𝑧) in the 

frequency domain as 

𝐻fir(𝑧) =
𝑌fir(𝑧)

𝑋fir(𝑧)
= ∑ 𝑏𝑚𝑧−𝑚

𝑀

𝑚=0

 , 

𝐻iir(𝑧) =
𝑌iir(𝑧)

𝑋iir(𝑧)
=

∑ 𝑏𝑚𝑧−𝑚𝑀
𝑚=0

∑ 𝑎𝑙𝑧−𝑙𝐿
𝑙=1

 . 

Performing a dynamic calibration would require the coefficients 𝑎𝑙 , 𝑏𝑚 as well as their 

respective uncertainties to be determined [76]. A brief outline of the basic principles of 

dynamic measurement analysis that combines inputs from different fields such as 

measurement science, statistics, mathematics and signal processing can be found in [77] and 

[78]. Methods for the analysis of dynamic measurements and dynamic calibration have 

already been implemented in several use cases. For instance, a method to incorporate 

dynamic uncertainty in real-time systems and compensate for jitter prior to sensor fusion 

was explored in [79]. Other areas where dynamic calibration has been explored are 

waveform metrology [80], the calibration of hydrophones used as medical ultrasonic 

instruments [81] and in the case of high-g shock-accelerometers [82]. 

3.2.3 Use case specific considerations 

3.2.3.1 District heating 

 Sensor fusion is especially important to the case of district heating as typical networks are 

sparsely populated, i.e. physical sensors are located at only a few points. In order to optimize 

the network, it is important to deduce parameters at several other locations using sensor 

fusion. Kalman filtering is the most used method and accounts for the uncertainty of the 

estimated value, when set up correctly. An example of a sensor fusion application is the 

spatial interpolation to determine values of a quantity at points without a physical sensor. 

3.2.3.2 Industrial Manufacturing 

The main application of sensor fusion for the heat treatment of high-value components in 

advanced manufacturing is to detect and quantify calibration drift in sensors, specifically 

thermocouples comprising wires made of platinum (Pt) and its alloys with rhodium (Pt-Rh). 

The uncertainty of the estimates of the calibration drift for the individual sensors is an 

important metric for quantifying the reliability of the sensor network, which is in the form of 

a multi-wire thermocouple, as well as the drift detection algorithm. Currently, sensor fusion 



 
 

This project is supported by:   Page 36 

   
              

 

 

techniques for this use-case are under development with the aim to treat data fusion for 

sensors with different systematic drift characteristics as well as the handling of correlations 

and uncertainty in recorded sensor data. The fused values here do not correspond to 

interpolated measurements, but to an estimate of the common temperature measured the 

sensors. Some of the methods for sensor fusion under consideration are ‘data-driven’, in the 

sense that they make very few assumptions about the sensor network that generates the 

data, and they make no use of knowledge about the physical mechanism that leads to 

calibration drift. Other methods use, to varying degrees, knowledge about the sensor 

network and those mechanisms. Furthermore, consideration is given to how those methods 

can be made ‘uncertainty-aware’, i.e., to account for the (measurement) uncertainties 

associated with the different sources of information used by the methods, including 

measured data obtained from observation and data obtained from physics-based models. 

Those uncertainties are then used as the basis for evaluating the uncertainties for the 

estimates of the quantities inferred or predicted by the methods. 

Smart buildings: Sensor fusion techniques are also very important in smart building 

applications. There is a distinct need for guidelines for the validation of models and 

algorithms as well as for the development of standards and benchmarks. As in the case of 

industrial manufacturing, the use of Kalman filters is prominent. In addition, Bayesian 

networks are employed frequently [83]. 

Environmental monitoring: The role of sensor fusion in environmental/air-quality monitoring 

needs to be studied further. The main issue is here is to assess whether model-based sensor 

data assimilation can be considered as a form of sensor fusion. Data assimilation in this 

context involves estimating the error of a model through the interpolation of sparsely 

observed errors. In other words, one could say that interpolation tasks are a form of sensor 

fusion with model outputs. In this case, methods developed for uncertainty propagation and 

traceability would find direct application. 

3.2.4 Summary 

Sensor fusion techniques are known to be integral to several domains with sensor network 

use cases. The applications range from interpolation in the form of deducing parameters at 

different locations to the use of sensor fusion for drift detection. In order for the developed 

methods to be applied in a trustworthy manner, ensuring the uncertainty awareness and 

hence the traceability of the methods is of utmost importance. As such methods will almost 

certainly involve the use of time-varying quantities, the uncertainty awareness must also 

account for the dynamic nature of the system. A brief literature review along with basic 

concepts relevant to sensor fusion and dynamic calibration in sensor networks was 

presented. A special emphasis was placed on consensus filtering and Kalman filters as 

commonly used data fusion methods. A brief overview of the basic concepts of dynamic 

calibration and the estimation of the transfer behavior of a sensor were also presented. 

Finally, a discussion of a set of real-world use cases and their individual requirements with 
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respect to sensor fusion and dynamic calibration were also provided. The potential 

application of sensor fusion to sensor network use cases is varied. The combination of data-

driven and physics-based models for drift detection was found to be a particularly important 

subject. In the context of metrology, the propagation of uncertainty to the fused value is of 

utmost importance. 

 

3.3 Digital Twins and Digital Shadows as Potential Modelling 

Techniques for Case Studies 
 

This section summarizes different modelling techniques and relevant literature on digital 

twins and digital shadows. Definitions of digital twins and digital shadows will be given and 

afterwards the sections will focus on the different project use case and any potential 

modelling techniques within that. 

 

3.3.1 General definitions 
A digital twin is a technology that is more than just the digital representation of the real object; 

it also enables bi-directional data exchange and real-time management [84]. Therefore, a 

digital twin differs from models like Building Information Modeling (BIM) models. A Digital 

Shadow is similar to a digital twin but not as advanced, as it only allows a one-way transfer of 

data [84]. 

 

 

 

Figure 1: Comparison between digital twin and digital shadow. [84] 

 

In recent years, digital twins have gained increasing attention due to their versatile 

applications. Digital twins provide benefits throughout the entire lifecycle of a product [85]. 

Therefore, digital twins are currently used in important industries, including environmental 
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protection, urban management, oil and gas, aerospace, electricity, automotive, healthcare, 

rail transport, manufacturing, construction, and shipping [86]. In the buildings sector, digital 

twins are mainly used for four different topics: to optimize the design of a building, to 

increase the comfort of occupants, to evaluate and increase the building performance, and 

finally, to simulate and forecast future situations. [87] 

The digital representation of a specific object enables optimized decision-making, which can 

be analyzed in digital space [85]. However, a digital twin not only consists of a model of the 

real object but also includes a data link between the real and digital object [87].  Therefore, 

three main elements are required for a digital twin: the real-world entity, a digital 

representation of the real-world entity, and a linking mechanism that allows an automatic bi-

directional data transfer between the two entities. [87] 

 

3.3.2 Potential modelling techniques from literature 

In the following, potential modelling techniques, e.g., digital shadow and digital twin and 

relevant existing bibliography, are described for a few of the use cases used in this guide.  

 

3.3.2.1 Use-Case “Environmental monitoring” 

The concept of digital twins is relatively new and involves substantial funding to develop real-

time models for environmental applications. Research has predominantly focused on 

exploring their potential in environmental modeling, yet there are some promising examples 

where digital twins have proven effective in environmental monitoring. 

 [88] described the development of a digital twin focused on advanced modeling of soil 

moisture, river discharge, evaporation, and precipitation. This digital twin collects and 

disseminates current data from the Mediterranean Basin, encompassing countries like Spain, 

France, Italy, Greece, Turkey, and others. It serves purposes such as predicting landslides, 

managing irrigation water resources, and forecasting forest fires. However, the study 

underscores several challenges, including the need for high-resolution monitoring (1 km, 1 

hour) and sophisticated artificial intelligence (AI) to grasp human impacts on hydrological 

processes, alongside uncertainties in data accuracy. 

 [89] proposed a similar framework for visualizing environmental sensor data within the 

context of digital twins, applying it to create a digital twin of Poyang Lake in China. They 

employed scalar and vector visualization methods to present collected environmental data 

and utilized video fusion technology for real-time display of environmental surveillance 

videos. Their study underscored the framework's practical benefits in enhancing the 

efficiency of Poyang Lake's environmental monitoring, suggesting its adaptability to other lake 

environments. 
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 [90] explored the creation of a digital twin for air quality monitoring networks in smart cities, 

relying on mathematical models grounded in differential equations. They highlighted the 

application of these models for simulating pollutants like carbon monoxide (CO), ozone (O3), 

nitrogen oxide (NO), and nitrogen dioxide (NO2) across spatial and temporal dimensions, 

contingent upon initial data for predictive purposes. The digital twin operates through 

continuous data exchange between physical sensors and the digital model, facilitating real-

time updates. Expected advantages include predictive maintenance, risk assessment, and 

operational improvements, though challenges such as sensor data quality and 

computational limitations are acknowledged. 

 [91] presented a case study on developing a digital twin for Jakarta, Indonesia, integrating 

Digital Twin and Mixed Reality technologies to advance Smart City initiatives. This integration 

enables planners and decision-makers to visualize and implement solutions for optimizing 

transport routes, implementing greener energy policies in highly polluted areas, and 

expanding urban green spaces effectively. Their approach leveraged existing datasets such 

as meteorological records, air quality metrics, and traffic data to build the digital twin 

infrastructure. 

 [92] investigated the evolution of digital twins in urban air quality management, emphasizing 

real-time sensor data integration and predictive modeling. Their research enables cities to 

simulate air pollution scenarios based on factors like traffic patterns and weather conditions, 

supporting informed decision-making to mitigate pollution hotspots and enhance public 

health. For instance, digital twins predict pollutant levels in specific urban zones, guiding 

policies aimed at reducing emissions and improving air quality standards. 

 

3.3.2.2 Use-case “Smart buildings” 

The building sector accounts for nearly one-third of the global final energy consumption [93]. 

Thus, increasing the operational energy efficiency of buildings is critical to achieving carbon 

neutrality. Digitalization of buildings can reduce energy consumption by approximately 10 % 

using real-time data to improve the operational efficiency of buildings, according to the 

International Energy Agency [94]. Thus, many concepts, such as cyber-physical systems and 

digital twins, have been proposed [95]. A digital twin differs significantly from a static 3D 

model derived from building information modeling (BIM) [96].   

However, BIM models are currently widely utilized as a basis for the derivation of digital twins 

[87]. Furthermore, building energy model (BEM) models are derived and combined with GIS 

datasets in cases of performance simulations for multiple buildings up to the urban level 

[87]. Furthermore, Internet of Things (IoT) devices such as temperature, humidity, and 

sensors are widely utilized in literature [87] [97] [98] [99].  The integration of an IoT 

infrastructure enables a digital twin to process and visualize measurement data [87]. 

Therefore, IoT is utilized in combination with machine learning to derive a digital twin in the 
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building sector [6,7,8]. In conclusion, in the context of building energy efficiency and control, 

a BIM model is utilized as a starting point for a digital twin, and cloud computing and Internet-

of-things (IoT) technologies are integrated into the digital twin platform [87]. 

The derivation of a digital twin for buildings remains challenging due to the inherent 

characteristics of buildings, such as the design differences, the large building sizes, and their 

long operational period [95]. Yoon [95] divides the process of deriving a digital twin into 3 

phases. First, in the design stage, BIM information is utilized in combination with prebuild 

models and physics-based white box modeling to derive surrogate models based on data-

driven methods. These models are calibrated in a later step during their life cycle. Second, 

intrusive data is collected during commissioning to verify or update the white-box, surrogate, 

or prebuild models from the design phase. During the third phase, the operation phase, data 

is obtained non-intrusively from physical sensors. Prebuild models are continuously applied 

and calibrated with correlational techniques. Thus, the gap between the real building and its 

digital twin can be reduced so that the real building can be operated optimally [95]. 

Furthermore, energy-related occupant behavior has a large impact on the predicted and 

observed energy consumption phase [100]. Thus, there is a need for an intelligent, optimized, 

and personalized control of the indoor environment that acknowledges the occupant's 

preferences [101]. Therefore, an intelligent energy management system should 

communicate with the occupants and have up-to-date information [101]. Furthermore, 

external conditions such as irradiance and outdoor temperature can play a key role in 

energy-related decisions and should be processed to make decisions for intelligent energy 

and comfort management [101].  

In  [101] divides energy management strategies into three non-mutually exclusive categories: 

conventional control strategies, intelligent control, and multi-agent-based modeling. Classical 

controllers encompass P, PI, and PID controllers that are closed-loop controllers.  However, 

these controllers are non-optimal and lead to energy consumption waste [101]. Thus, 

adaptive controllers were designed, integrating fuzzy logic controllers into the control loop. 

Similarly, least-square estimations were introduced as an alternative to fuzzy controllers to 

keep the performance stable when facing uncertainties [101]. However, these controllers 

depend on the building model, do not have the flexibility to deal with varying occupant 

comfort, and have limited learning capabilities [101]. 

Intelligent controllers encompass many different approaches to derive control strategies, 

such as computational intelligence (CI), including fuzzy logic, artificial neural networks, genetic 

algorithms, or model-based model predictive control (MPC) [101]. The main features of CI 

are the learning capability, the interaction with the occupant to receive feedback, their 

adaptability to the environment, and the ability to operate under uncertainty [101].  MPC is 

a control strategy that can handle uncertainty in parameters, occupancy, comfort conditions, 

and weather predictions using dynamic models [101]. Previous outputs of the system are 
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utilized to predict future control signals and optimize them according to an objective [101]. 

Finally, muti-agent-based modeling techniques are characterized by multiple agents that 

have the ability to act autonomously. Each agent can cooperate with other agents while 

fulfilling their specific goal. In intelligent energy system management, a central agent is 

generally responsible for supervisory control. [101] 

In the following, the simulation-based, agent-based and machine learning modelling 

techniques are summarized. 

White-Box / Simulation-Based Modelling 

White box modeling, also known as physical or deductive modeling, involves creating a 

detailed representation of the building's physical characteristics and systems. This method 

relies on first principles and explicit knowledge of the building's structure, materials, and 

dynamics. Key features of white box modeling include its transparency, as all aspects of the 

model are known and can be examined in detail. White box models are highly detail-oriented, 

including comprehensive information about the building's geometry, thermal properties of 

materials, HVAC systems, and occupancy patterns. However, this approach requires 

extensive and accurate data about the building's physical characteristics and operational 

parameters. The high level of detail ensures high accuracy in simulating building 

performance, making this method especially suitable for new buildings or those with well-

documented characteristics. 

Simulation models are closely related to white box modeling in the context of building 

performance analysis and design. Simulation models are widely used in building automation 

to create virtual replicas of building systems. These models allow for the testing and analysis 

of different scenarios without physical implementation. Simulation-based modelling is 

applied in performance evaluation of building automation system (BAS), scenario analysis, 

and system design and optimization. The advantages of this technique include providing a 

risk-free testing environment and the ability to model complex systems. On the downside, it 

has high computational requirements, and the model's accuracy depends on the quality of 

the input data. 

Modeling the whole building to simulate the overall building performance is commonly done 

using simulation tools such as EnergyPlus (developed by the U.S. Department of Energy), 

TRNSYS, DeST, or Modelica [102]. At Forschungszentrum Jülich, Energy Systems Engineering 

(ICE-1), the focus is currently on the usage of Modelica models, making use of the open 

source Modelica model library AixLib.  

However, the performance of the derived models depends on the input parameters. 

Inaccurate or incomplete data can lead to erroneous predictions and suboptimal decisions. 

Therefore, it is crucial to ensure that the models are calibrated with accurate data from the 

actual building systems. Thus, calibration of the parameters is needed to fit the simulation 
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model to the actual physical system [102]. Additionally, simulation models can be 

computationally intensive, requiring significant processing power and time, especially for 

large and complex buildings. 

Furthermore, the current physics-based simulation models utilized for digital twins often 

ignore the object's specific geometric shape and volume [102]. Such dynamics could be 

integrated by using CFD simulation models. Finally, artificial intelligence can be combined 

with digital twins to describe the relations between physical parameters and energy 

consumption more accurately. Thus, the energy efficiency can be improved [102].  

According to Pan et al. [102], simulations in digital twins are most commonly applied in the 

construction and operational phases. In the construction phase, simulations are utilized for 

monitoring, workers' safety management, and compliance checks of materials [102]. During 

the operation, a digital twin is utilized to improve the energy efficiency of the building, as well 

as to monitor thermal management and monitoring [102]. However, according to Pan et al. 

[102], digital twins are not yet fully used on a large scale. 

In addition to traditional simulation tools, there has been a growing interest in using co-

simulation approaches to enhance the accuracy and flexibility of building models. Co-

simulation involves coupling multiple simulation tools to model different aspects of a building 

system simultaneously. This approach allows for more detailed and integrated analyses, 

capturing the interactions between different subsystems more accurately. 

Wetter [103] studied the use of the Building Controls Virtual Test Bed (BCVTB), a co-

simulation platform that integrates EnergyPlus with other simulation tools such as MATLAB 

and Simulink. This integration enables the detailed simulation of building energy systems and 

control strategies, providing a more comprehensive understanding of system performance 

and potential optimization opportunities. 

Agent-based models 

Agent-based models (ABM) use autonomous agents to represent individual components 

within a building system. Each agent follows a set of rules and interacts with other agents, 

leading to emergent system behavior. 

ABM is used for decentralized control systems, occupant behavior modelling, and energy 

management. Its main advantages are flexibility in modelling diverse behaviors and suitability 

for complex adaptive systems. However, it requires detailed definition of agent rules and can 

be computationally expensive. 

Wang et al. [104] utilized ABM for modeling occupant behavior and its impact on energy 

consumption, providing insights into how different usage patterns affect overall building 

performance. D’Oca and Hong [105] explored the application of ABM in simulating occupant 
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interactions with building systems, demonstrating how these interactions can be optimized 

to enhance energy efficiency and occupant comfort. 

Black box Modelling / Machine Learning Models 

In building automation, black box modelling refers to a modelling approach where the 

internal workings or mechanisms of the system are not explicitly understood or modeled. 

Instead, the emphasis is on capturing the input-output relationship of the system using 

empirical data or observations. Black box models are typically used when the underlying 

processes are complex or not fully understood, and the focus is on predicting outputs based 

on inputs without delving into the detailed mechanisms. 

Machine learning (ML) techniques often function as black box models in building applications. 

They are nowadays increasingly applied in building automation to analyze large datasets and 

identify patterns for system optimization and predictive maintenance. Machine learning (ML) 

techniques are transforming building automation by enabling systems to analyze large 

datasets, identify patterns, and optimize operations. These models are being applied in fault 

detection and diagnosis, predictive maintenance, and energy consumption forecasting. 

ML models are particularly effective for fault detection, diagnosis and control purposes in 

BAS. They can process vast amounts of sensor data to identify anomalies that indicate 

equipment malfunctions or inefficiencies. For instance, supervised learning algorithms such 

as decision trees and support vector machines (SVMs) can be trained to recognize fault 

patterns using historical data. Once trained, these models can quickly detect faults in real-

time, reducing downtime and maintenance costs. 

Predictive maintenance is another critical application of ML in building automation. 

Traditional maintenance schedules are based on fixed intervals, which can be inefficient. ML 

models can predict when maintenance is actually needed by analyzing trends in sensor data. 

Techniques such as regression analysis and neural networks are used to predict the 

remaining useful life of equipment. This predictive approach minimizes unnecessary 

maintenance, extends the lifespan of equipment, and reduces costs. 

Energy consumption forecasting is essential for optimizing energy use in buildings. ML 

models, particularly time series forecasting techniques like ARIMA and LSTM networks, can 

predict future energy consumption based on past usage patterns, weather data, and 

occupancy information. Accurate energy forecasts enable more effective demand response 

strategies and energy purchasing decisions, ultimately leading to cost savings and reduced 

environmental impact. 

The primary advantages of ML models include their ability to handle large datasets, adapt to 

new data, and identify complex, non-linear relationships between variables. However, they 

require extensive training data and computational resources. The interpretability of ML 

models can also be challenging, particularly with complex models like deep neural networks. 
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In [106], a review of the use of machine learning for energy prediction in smart buildings, 

highlighting how different ML algorithms can accurately forecast energy consumption based 

on historical data is presented. They found that ML models outperformed traditional 

statistical methods in terms of accuracy and adaptability. In [107], the application of deep 

learning techniques for fault detection in HVAC systems, showing how these models can 

identify anomalies and predict potential failures, thereby reducing maintenance costs and 

improving system reliability is demonstrated. 

Another significant development in ML for building automation is the use of reinforcement 

learning (RL). RL algorithms can learn optimal control strategies through trial and error, 

making them suitable for complex systems where predefined control strategies are 

impractical. In [108], RL to optimize HVAC control, resulting in significant energy savings while 

maintaining occupant comfort is applied. RL models are particularly valuable in dynamic 

environments where system behavior changes over time. 

Hybrid Models 

Hybrid models combine multiple modelling techniques to leverage their strengths and 

mitigate their weaknesses. These models are particularly useful in capturing the complex 

interactions within building systems. 

Hybrid modelling approaches are applied in integrated building energy management, 

enhancing system reliability, and providing comprehensive system analysis. The primary 

advantages include improved accuracy and greater modelling flexibility. However, these 

models come with increased complexity and require expertise in multiple modelling 

techniques. In [109], mathematical and simulation models for HVAC control, demonstrating 

how this hybrid approach can enhance system performance and energy efficiency are 

combined. Furthermore, hybrid models integrating physical and data-driven approaches for 

building energy prediction, highlighting how this combination can provide more accurate and 

robust predictions compared to using a single modelling technique are discussed. 

 

3.3.3 Summary 

The modelling techniques for buildings are diverse, each with its own set of advantages and 

limitations. Mathematical and simulation-based models provide a strong basis for system 

understanding and performance prediction, while agent-based and machine learning 

models offer innovative ways to handle complex behaviors and large datasets. Hybrid models 

present a promising direction for future research by integrating the strengths of various 

techniques to address the multifaceted challenges in building modelling. 
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 Conclusions 
This document provides guidance on data quality in sensor networks. It provides an overview 

of metrics that can be used to assess the data quality of a sensor network. There are many 

distinct aspects of data quality one can assess, and which metrics are important depends on 

the use case.  Based on the use cases used in the guide it is most important that data is 

complete (completeness) and correct (accuracy). In addition, it is also important that the data 

is traceable and not outdated (timeliness). 

Many aspects of data quality depend highly on the specific application or use case. One thing 

is the required number of sensors in a sensor network affecting the spatial coverage whilst 

the quality of the individual sensors affect the accuracy. In the case of large-scale 

deployments, the cost of the sensors cannot be too high, which means that the sensors will 

be of lower quality. In other cases, the aim is typically to employ high-quality sensors.  

In sensor networks, lack of data coverage can disrupt reporting. Some common problems 

can be met with mitigation strategies such as duplication of sensor nodes. Field calibration 

campaigns can fail to produce sufficient data to give confidence in derived calibration models. 

This can be mitigated by increasing the duration of the calibration effort. This can be critical 

if continuous reporting is required since network nodes being used in the field calibration 

campaign cannot be used at the deployment locations. Accuracy is a mandatory requirement 

that can be attained to a certain extent with low-cost sensors in a trade off with costs. 

When it comes to validating data there are a few common steps. First it is necessary to get a 

thorough understanding of the data to capture the relationships and intricacies. From here 

different data quality dimensions can be selected based on their importance and used as the 

foundation of creating data validation rules. Before creating any rules, it can also be beneficial 

to define any critical data, i.e. which data is most important for example from a risk 

perspective. The validation rules should consider the business rules, risks, needs, and 

expectations of the data consumers. Furthermore, they should be measurable. With a set of 

measurable rules, it is possible to define metrics to capture these. The process of creating 

validation rules can be repeated continuously. In the beginning, it is to ensure the right rules 

are formulated and later for maintaining rules as requirements change or new uses of data 

are discovered. Implementing data validation rules as an automated process in a given 

system is desirable to ensure constant validation of new data and due to the volume, speed, 

and variety of data. 

The typical lifecycle of a node is similar in air quality monitoring networks, networks of 

temperature sensors for district heating, and sensors in smart buildings. Very long lifecycles 

are expected in sensors in gas flow sensor networks (-20 years), district heating networks (-

16 years), and smart building sensor networks (large networks with difficult recalibration 

processes). The lifecycle of sensor network in heat treatment of high value components is 
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very repetitive and happens under harsh conditions, while network operators are aiming for 

good performance over an exploitation period of several years. 

 

Three prototypical sensor network scenarios are proposed to formulate guidelines and 

practical considerations for the application of such methods in real sensor networks. For 

each scenario, multiple promising and existing co-calibration methods are presented. The 

advantages of these methods regarding metrologically sound results are briefly discussed 

for each method, revealing a lack of uncertainty evaluation in many methods. Moreover, 

general remarks are provided that enhance the data quality of suitable datasets and prepare 

the automation of in-situ calibration methods. Finally, the applicability in real-world use cases 

were discussed for three generic scenarios corresponding to common sensor network 

configurations: dense networks with stationary sensors, sparse networks with stationary 

sensors and sparse networks with mobile sensors and stationary reference nodes.  The latter 

of the three scenarios was further discussed for the specific case of air-quality monitoring 

networks. It was shown that the methods for co-calibration and in situ calibration must take 

the mobility of individual sensor nodes into account. The use of low-cost sensors in such 

networks further increases the need to develop methods for uncertainty-aware sensor 

fusion, drift detection, dynamic uncertainty estimation, and optimized traceability paths. 

Sensor fusion techniques are known to be integral to several domains with sensor network 

use cases. The applications range from interpolation in the form of deducing parameters at 

different locations to the use of sensor fusion for drift detection. In order for the developed 

methods to be applied in a trustworthy manner, ensuring the uncertainty awareness and 

hence the traceability of the methods is of utmost importance. Since such methods will 

almost certainly involve the use of time-varying quantities, the uncertainty awareness must 

also account for the dynamic nature of the system. In a brief literature review special 

emphasis was placed on consensus filtering and Kalman filters as commonly used data fusion 

methods. A discussion of a set of real-world use cases and their individual requirements with 

respect to sensor fusion and dynamic calibration showed the potential application of sensor 

fusion to sensor network use cases is varied. The combination of data-driven and physics-

based models for drift detection was found to be a particularly important subject. In the 

context of metrology, the propagation of uncertainty to the fused value is of utmost 

importance. 

The modelling techniques for buildings are diverse, each with its own set of advantages and 

limitations. Mathematical and simulation-based models provide a strong basis for system 

understanding and performance prediction, while agent-based and machine learning 

models offer innovative ways to handle complex behaviors and large datasets. Hybrid models 

present a promising direction for future research by integrating the strengths of various 

techniques to address the multifaceted challenges in building modelling. 



 
 

This project is supported by:   Page 47 

   
              

 

 

 

 

 References 
 

[1]  L. Zhang, D. Jeong and S. Lee, "Data Quality Management in the Internet of Things," 

Sensors, 2021.  

[2]  H. Veregin, "Data quality parameters," Geographical information systems, pp. 177-189, 

1999.  

[3]  S. Geisler, C. Quix, S. Weber and M. Jarke, "Ontology-Based Data Quality Management 

for Data Streams," Journal of Data and Information Quality, pp. 1-34, 2016.  

[4]  R. Perez-Castillo, C. G. Ana, I. Caballero, M. Rodriguez, M. Piattini, A. Mate, S. Kim and 

D. Lee, "DAQUA-MASS: An ISO 8000-61 Based Data Quality Management Methodology 

for Sensor Data," Sensors, p. 3105, 2018.  

[5]  T. C. Redman, "Measuring data accuracy: A framework and review.," in Information 

quality, 2014, pp. 21-36. 

[6]  H. Cheng, D. Feng, X. Shi and C. Chen, "Data quality analysis and cleaning strategy for 

wireless sensor networks," EURASIP Journal on Wireless Communications and 

Networking, pp. 1-11, 2018.  

[7]  A. Klein and W. Lehner, "Representing Data Quality in Sensor Data Streaming 

Environments," Journal of Data and Information Quality, vol. 1, no. 2, pp. 1--28, 

September 2009.  

[8]  A. Karkouch, H. Mousannif, H. Al Moatassime and T. Noel, "Data quality in internet of 

things: A state-of-the-art survey," Journal of Network and Computer Applications, vol. 73, 

pp. 57--81, 9 August 2016.  

[9]  A. P. Vedurmudi, J. Neumann, M. Gruber and S. Eichstädt, "Semantic description of 

quality of data in sensor networks," Sensors, vol. 21, no. 19, p. 6462, 2021.  

[10]  DAMA International, Data Management Body of Knowledge - 2nd Edition, Basking 

Ridge, New Jersey: Technics Publications, 2017.  



 
 

This project is supported by:   Page 48 

   
              

 

 

[11]  ClearPoint Strategy, "7 Important Characteristics of Data Quality & Metrics to track," 

21 February 2023. [Online]. Available: https://www.clearpointstrategy.com/blog/data-

quality-metrics. [Accessed 1 November 2023]. 

[12]  P. Cykana, A. Paul and M. Stern, "DoD Guidelines on Data Quality Management," IQ, 

pp. 154-171, 1996.  

[13]  S. G. Hackel, F. Härtig, J. Hornig and T. Wiedenhöfer, "The Digital Calibration Certificate," 

PTB Mitteilungen, vol. 127, no. 4, pp. 75--81, December 2017.  

[14]  G. Kok and P. Harris, "Quantifying Metrological Redundancy in an Industry 4.0 

Environment," in IEEE International Workshop on Metrology for Industry 4.0 & IoT, Rome, 

2020.  

[15]  S. De Vito, G. D’Elia, S. Ferlito, G. D. Francia, M. Davidović, D. Kleut, D. Stojanović and M. 

Jovaševic-Stojanović, "A global multi-unit calibration as a method for large scale IoT 

particulate matter monitoring systems deployments," IEEE Transactions on 

Instrumentation and Measurement, vol. 73, pp. 1--16, 2024.  

[16]  L. Cai and Y. Zhu, "The Challenges of Data Quality and Data Quality Assessment in the 

Big Data Era," Data Science Journal, vol. 14, 2015.  

[17]  J. Wang, Y. Liu, P. Li, Z. Lin, S. Sindakis and S. Aggarwal, "Overview of Data Quality: 

Examining the Dimensions, Antecedents, and Impacts of Data Quality," Journal of the 

Knowledge Economy, 2023.  

[18]  Danish Agency for Digital Government, "Fælles sprog for datakvalitet," 24 September 

2021. [Online]. Available: https://arkitektur.digst.dk/metoder/begrebs-og-

datametoder/faelles-sprog-datakvalitet. [Accessed 9 April 2024]. 

[19]  ISO 25012 - Data quality model, 2008.  

[20]  A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and S. Auer, "Quality 

Assessment for Linked Data: A Survey’," Semantic Web, vol. 7, no. 1, pp. 63-93, 2016.  

[21]  R. Y. Wang and D. M. Strong, "Beyond Accuracy: What Data Quality Means to Data 

Consumers," Journal of Management Information Systems, vol. 12, no. 4, p. 5–33, 1996.  

[22]  M. Zio, N. Fursova, T. Gelsema, S. Giessing, U. Guarnera, J. Petrauskienė, L. Quensel, 

M. Scanu, K. Bosch, M. Loo and K. Walsdorfer, "Methodology for data validation 1.0," 

European Comission, 2016. 



 
 

This project is supported by:   Page 49 

   
              

 

 

[23]  A. P. Vedurmudi, J. Neumann, M. Gruber and S. Eichstädt, "Semantic Description of 

Quality of Data in Sensor Networks," Sensors, vol. 21, no. 19, p. 6462, 28 September 

2021.  

[24]  A. Miquel-Ibarz, J. Burgués and S. Marco, "Global calibration models for temperature-

modulated metal oxide gas sensors: A strategy to reduce calibration costs," Sensors 

and Actuators B: Chemical, vol. 350, p. 130769, 1 January 2022.  

[25]  A. Solórzano, R. Rodríguez-Pérez, M. Padilla, T. Graunke, L. Fernandez, S. Marco and J. 

Fonollosa, "Multi-unit calibration rejects inherent device variability of chemical sensor 

arrays," Sensors and Actuators B: Chemical, vol. 265, pp. 142--154, 15 July 2018.  

[26]  BIPM, The International System of Units (SI), 2019.  

[27]  BIPM et al., International vocabulary of metrology - Basic and general concepts and 

associated terms (VIM), 2012.  

[28]  F. Delaine, B. Lebental and H. Rivano, "In Situ Calibration Algorithms for Environmental 

Sensor Networks: A Review," IEEE Sens. J., vol. 19, no. 15, pp. 5968-5978, August 2019.  

[29]  M. Gruber, A. P. Vedurmudi and S. Eichstädt, "Co-Calibration in Distributed 

Homogeneous Sensor Networks," Sensor and Measurement Science International, SMSI, 

vol. 2023, pp. 47-48, 2023.  

[30]  K. Whitehouse and D. Culler, "Macro-Calibration in Sensor/Actuator Networks," Mob. 

Netw. Appl., vol. 8, pp. 463-472, August 2003.  

[31]  L. Balzano and R. Nowak, "Blind Calibration of Sensor Networks," IEEE, pp. 79-88, 2007.  

[32]  M. Stankovic, S. Stankovic, K. Johansson, M. Beko and L. Camarinha-Matos, "On 

Consensus-based Distributed Blind Calibration of Sensor Networks," 2018.  

[33]  M. Gruber, "Consensus-based Online Co-Calibration for Networks of Homogeneous 

Sensors in IIoT Environments under Consideration of Semantic Knowledge," Freie 

Universität Berlin, Berlin, Available, 2024.  

[34]  A. Martins, I. Fonseca, J. T. Farinha, J. Reis and A. J. M. Cardoso, "Online Monitoring of 

Sensor Calibration Status to Support Condition-Based Maintenance," Sensors, vol. 23, 

no. 5, 2023.  

[35]  J. Grübel, T. Thrash, L. Aguilar, M. Gath-Morad, D. Hélal, R. W. Sumner, C. Hölscher and 

V. R. Schinazi, "Dense Indoor Sensor Networks: Towards passively sensing human 

presence with LoRaWAN," Pervasive and Mobile Computing, vol. 84, p. 101640, 2022.  



 
 

This project is supported by:   Page 50 

   
              

 

 

[36]  M. S. Stanković, S. S. Stanković and K. H. Johansson, "Asynchronous Distributed Blind 

Calibration of Sensor Networks Under Noisy Measurements," IEEE Trans. Control Netw. 

Syst., vol. 5, no. 1, pp. 571-582, March 2018.  

[37]  M. S. Stanković, S. S. Stanković and K. H. Johansson, "Distributed Blind Calibration in 

Lossy Sensor Networks via Output Synchronization," IEEE Trans. Autom. Control, vol. 60, 

no. 12, pp. 3257-3262, December 2015.  

[38]  F. Kizel, Y. Etzion, R. Shafran-Nathan, I. Levy, B. Fishbain, A. Bartonova and D. M. Broday, 

"Node-to-node field calibration of wireless distributed air pollution sensor network," 

Environ. Pollut., vol. 233, pp. 900-909, February 2018.  

[39]  A. Swain, E. Abdellatif, A. Mousa and P. Pong, "Sensor Technologies for Transmission 

and Distribution Systems: A Review of the Latest Developments," Energies, vol. 15, no. 

19, p. 7339, 2022.  

[40]  M. Carnero, J. Hernández, M. Sánchez and A. Bandoni, "An Evolutionary Approach for 

the Design of Nonredundant Sensor Networks,," Industrial & Engineering Chemistry 

Research, vol. 40, no. 23, 23 October 2001.  

[41]  B. Santos, A. Soares, T.-A. Nguyen, D.-K. Min, J.-W. Lee and F.-A. Silva, "IoT Sensor 

Networks in Smart Buildings: A Performance Assessment Using Queuing Models," 

Sensors, vol. 21, no. 16, p. 5660, 23 August 2021.  

[42]  A. Forbes, "Traceable measurements using sensor networks," Trans. Mach. Learn. Data 

Min., vol. 8, p. 77, 2015.  

[43]  S. Moltchanov, I. Levy, Y. Etzion, U. Lerner, D. M. Broday and B. Fishbain, "On the 

feasibility of measuring urban air pollution by wireless distributed sensor networks," 

Sci. Total Environ., vol. 502, pp. 537-547, January 2015.  

[44]  W. Tsujita, A. Yoshino, H. Ishida and T. Moriizumi, "Gas sensor network for air-pollution 

monitoring," Sens. Actuators B Chem., vol. 110, no. 2, pp. 304-311, October 2005.  

[45]  K. Klauenberg, S. Martens, A. Bošnjaković, M. G. Cox, A. M. H. v. d. Veen and C. Elster, 

"The GUM perspective on straight-line errors-in-variables regression," Measurement, 

vol. 187, p. 110340, January 2022.  

[46]  C. Lin, N. Masey, H. Wu, M. Jackson, D. Carruthers, S. Reis, R. Doherty, I. Beverland and 

M. Heal, "Practical Field Calibration of Portable Monitors for Mobile Measurements of 

Multiple Air Pollutants," Atmosphere, vol. 8, no. 12, December 2017.  



 
 

This project is supported by:   Page 51 

   
              

 

 

[47]  L. Sun, D. Westerdahl and Z. Ning, "Development and Evaluation of A Novel and Cost-

Effective Approach for Low-Cost NO2 Sensor Drift Correction," Sensors, vol. 17, no. 8, 

August 2017.  

[48]  V. Bychkovskiy, S. Megerian, D. Estrin and M. Potkonjak, "A Collaborative Approach to 

In-Place Sensor Calibration," in Information Processing in Sensor Networks, F. Zhao and 

L. Guibas, Eds., in Lecture Notes in Computer Science. Berlin, Berlin Heidelberg, 2003.  

[49]  C. R. a. Z. N. a. K. A. Martin, R. R. Dickerson, X. Ren, B. N. Turpie and K. J. Weber, 

"Evaluation and environmental correction of ambient CO2 measurements from a low-

cost NDIR sensor," Atmospheric Meas. Tech., vol. 10, no. 7, pp. 2383-2395, July 2017.  

[50]  E. Miluzzo, N. D. Lane, A. T. Campbell and R. Olfati-Saber, "CaliBree: A Self-calibration 

System for Mobile Sensor Networks," in Distributed Computing in Sensor Systems, S. E. 

Nikoletseas, B. S. Chlebus, D. B. Johnson, and B. Krishnamachari, Eds., in Lecture Notes in 

Computer Science., Berlin Heidelberg, 2008.  

[51]  D. Hasenfratz, O. Saukh and L. Thiele, "On-the-Fly calibration of low-cost gas sensors," 

in presented at the Proceedings of the 9th European conference on Wireless Sensor 

Networks, 2012.  

[52]  O. Saukh, D. Hasenfratz, C. Walser and L. Thiele, "On Rendezvous in Mobile Sensing 

Networks," in Real-World Wireless Sensor Networks, Cham, 2014.  

[53]  O. Saukh, D. Hasenfratz and L. Thiele, "Reducing multi-hop calibration errors in large-

scale mobile sensor networks," in presented at the Proceedings of the 14th International 

Conference on Information Processing in Sensor Networks, ACM, Apr. 2015, 2015.  

[54]  B. Maag, Z. Zhou, O. Saukh and L. Thiele, "SCAN: Multi-Hop Calibration for Mobile 

Sensor Arrays," in Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2017.  

[55]  Airlab, "Mesures et perceptions," 2024. [Online]. Available: 

https://airlab.solutions/projets/mesures-et-perceptions-184. [Accessed 12 July 2024]. 

[56]  S. Eichstädt, "Analysis of Dynamic Measurements - Evaluation of dynamic 

measurement uncertainty," 2012.  

[57]  T. J. Esward, C. Elster and J. P. Hessling, "Analysis of dynamic measurements: New 

challenges require new solutions," in XIX IMEKO World Congress on Fundamental and 

Applied Metrology, Lisbon, Portugal, 2009.  

[58]  BIPM, "JCGM, Evaluation of measurement data – Supplement 1 to the “Guide to the 

Expres-sion of Uncertainty in Measurement” – Propagation of Distributions using a 



 
 

This project is supported by:   Page 52 

   
              

 

 

Monte Carlo Method.," 2008. [Online]. Available: 

https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf. 

[59]  J. P. Hessling, "A novel method of evaluating dynamic measurement uncertainty 

utilizing digital filters," Meas. Sci. Technol., vol. 20, no. 5, p. 055106, April 2009.  

[60]  W. Elmenreich, "Sensor fusion in time-triggered systems," 2022. [Online]. Available: 

https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-11148. 

[61]  M. Gruber, W. Pilar von Pilchau, V. Gowtham, N.-S. Koutrakis, M. Riedl, S. Eichstädt, J. 

Hähner, E. Uhlmann, J. Polte and A. Willner, "Uncertainty-Aware Sensor Fusion in 

Sensor Networks," presented at the Sensor and Measurement Science International, 

Nuremberg, Germany, May 2021, 2021.  

[62]  M. Gruber, W. P. von Pilchau, V. Gowtham, N.-S. Koutrakis, N. Schönborn, S. Eichstädt, 

J. Hähner, M.-I. Corici, T. Magedanz, J. Polte and E. Uhlmann, "Application of 

Uncertainty-Aware Sensor Fusion in Physical Sensor Networks," in 2022 IEEE 

International Instrumentation and Measurement Technology Conference (I2MTC), 2022.  

[63]  R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar and B. Qureshi, "An Overview of 

IoT Sensor Data Processing, Fusion, and Analysis Techniques," Sensors, vol. 20, no. 21, 

2020.  

[64]  H. Durrant-Whyte, "Data Fusion in Sensor Networks," in 2006 IEEE International 

Conference on Video and Signal Based Surveillance, 2006.  

[65]  F. Alam, R. Mehmood, I. Katib, N. N. Albogami and A. Albeshri, "Data Fusion and IoT for 

Smart Ubiquitous Environments: A Survey," IEEE Access, vol. 5, pp. 9533-9554, 2017.  

[66]  D. L. Hall and J. Llinas, "An introduction to multisensor data fusion," Proc. IEEE, vol. 85, 

no. 1, pp. 6-23, 1997.  

[67]  W. Li, Z. Wang, G. Wei, L. Ma, J. Hu and D. Ding, "A Survey on Multisensor Fusion and 

Consensus Filtering for Sensor Networks," Discrete Dyn. Nat. Soc., vol. 2015, p. 683701, 

October 2015.  

[68]  R. Olfati-Saber and J. S. Shamma, "Consensus Filters for Sensor Networks and 

Distributed Sensor Fusion," in Proceedings of the 44th IEEE Conference on Decision and 

Control, 2005, 2005.  

[69]  E. Lovisari and S. Zampieri, "Performance metrics in the average consensus problem: 

A tutorial," Annu. Rev. Control, vol. 36, no. 1, pp. 26-41, 2012.  



 
 

This project is supported by:   Page 53 

   
              

 

 

[70]  D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, John 

Wiley & Sons, 2006.  

[71]  S. J. J. a. J. K. Uhlmann, "Unscented filtering and nonlinear estimation," Proceedings of 

the IEEE, vol. 92, no. 3, pp. 401-422, 2004.  

[72]  BIPM, "Evaluation of Measurement Data - Guide to the Expression of Uncertainty," 

2008. [Online]. Available: 

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf. 

[73]  A. Link, A. Täubner, W. Wabinski, T. Bruns and C. Elster, "Calibration of accel-erometers: 

determination of amplitude and phase response upon shock excitation," Meas. Sci. 

Technol., vol. 17, no. 7, p. 1888, June 2006.  

[74]  M. Jafaripanah, B. M. Al-Hashimi and N. M. White, "Application of analog adaptive filters 

for dynamic sensor compensation," IEEE Trans. Instrum. Meas., vol. 54, no. 1, pp. 245-

251, 2005.  

[75]  B. Saggin, S. Debei and M. Zaccariotto, "Dynamic error correction of a thermometer 

for atmospheric measurements," Measurement, vol. 30, no. 3, pp. 223-230, 2001.  

[76]  B. Seeger, L. Klaus and D. Nordmann, "Dynamic calibration of digital angular rate 

sensors," ACTA IMEKO, vol. 9, no. 5, p. 394, December 2020.  

[77]  S. Eichstädt, K. Ruhm and A. Shestakov, "Dynamic measurement and its relation to 

metrology, mathematical theory and signal processing: a review," J. Phys. Conf. Ser., vol. 

1065, no. 21, p. 212018, August 2018.  

[78]  T. Esward, S. Eichstädt, I. Smith, T. Bruns, P. Davis and P. Harris, "Estimating dynamic 

mechanical quantities and their associated uncertainties: application guidance," 

Metrologia, vol. 56, no. 1, p. 015002, February 2019.  

[79]  P. Ulbrich, F. Franzmann, F. Scheler and W. Schröder-Preikschat, "Design by 

uncertainty: Towards the use of measurement uncertainty in real-time systems," in 7th 

IEEE Inter-national Symposium on Industrial Embedded Systems (SIES'12), 2012, 2012.  

[80]  P. D. Hale, D. F. Williams and A. Dienstfrey, "Waveform metrology: signal 

measurements in a modulated world," Metrologia, vol. 55, no. 5, p. S135, August 2018.  

[81]  M. Weber and V. Wilkens, "A Comparison of Different Calibration Techniques for 

Hydrophones Used in Medical Ultrasonic Field Measurement," IEEE Trans. Ultrason. 

Ferroelectr. Freq. Control, vol. 68, no. 5, pp. 1919-1929, 2021.  



 
 

This project is supported by:   Page 54 

   
              

 

 

[82]  Y. Wu and Z. Huang, "Research on Dynamic Calibration Technology of Shock 

Accelerometer Based on Model Method," J. Phys. Conf. Ser., vol. 2041, no. 1, p. 012002, 

October 2021.  

[83]  V. Massimo, A. Carbonari and A. Giretti, "Bayesian Networks for Supporting Model 

Based Predictive Control of Smart Buildings," 2014.  

[84]  S. M. E. Sepasgozar, "Differentiating digital twin from digital shadow: Elucidating a 

paradigm shift to expedite a smart, sustainable built environment," Buildings, vol. 11, 

2021.  

[85]  A. Thelen and e. al., "A comprehensive review of digital twin---part 1: modeling and 

twinning enabling technologies," Structural and Multidisciplinary Optimization, vol. 65, 

p. 12, 2022.  

[86]  B. Yang, Z. Lv and F. Wang, "Digital twins for intelligent green buildings," Buildings, vol. 

12, p. 6, 2022.  

[87]  R. Bortolini, R. Rodrigues, H. Alavi, L. Vecchia and N. Forcada, "Digital twins' applications 

for building energy efficiency: A review," Energies, vol. 15, p. 19, 2022.  

[88]  L. Brocca, S. Barbetta, S. Camici, L. Ciabatta, J. Dari, P. Filippucci, C. Massari, S. 

Modanesi, A. Tarpanelli, B. Bonaccorsi, H. Mosaffa and W. Wagner, "A Digital Twin of 

the terrestrial water cycle: a glimpse into the future through high-resolution Earth 

observations," Frontiers in Science, vol. 1, 2024.  

[89]  H. Chen, C. Fang and X. Xiao, "Visualization of Environmental Sensing Data in the Lake-

Oriented Digital Twin World: Poyang Lake as an Example," Remote Sensing, vol. 15, 

2023.  

[90]  G. Tancev and F. G. Toro, "Towards a Digital Twin for Air Quality Monitoring Networks 

in Smart Cities," 2022 IEEE International Smart Cities Conference (ISC2), 2022.  

[91]  D. Arinsyah, M. Isnan, R. Rahutomo and B. Pardamean, "Digital Twin (DT) Smart City for 

Air Quality Management," Procedia Computer Science, vol. 227, pp. 524-533.  

[92]  D. Topping, T. J. Bannan, H. Coe, J. Evans, C. Jay, E. Murabito and N. Robinson, "Digital 

Twins of Urban Air Quality: Opportunities and Challenges," Frontiers in Sustainable 

Cities, vol. 3, 2021.  

[93]  IEA, "Net Zero by 2050," Paris, 2021. [Online]. Available: 

https://www.iea.org/reports/net-zero-by-2050. 



 
 

This project is supported by:   Page 55 

   
              

 

 

[94]  IEA, "Digitalisation and Energy," Paris, 2017. [Online]. Available: 

https://www.iea.org/reports/digitalisation-and-energy. 

[95]  S. Yoon, "Building digital twinning: Data, information, and models," Journal of Building 

Engineering, vol. 76, p. 107021, 2023.  

[96]  M. a. M. C. C. a. K. V. R. Deng, "From BIM to digital twins: A systematic review of the 

evolution of intelligent building representations in the AEC-FM industry," Journal of 

Information Technology in Construction, vol. 26, 2021.  

[97]  I. Martínez, B. Zalba, R. Trillo-Lado, T. Blanco, D. Cambra and R. Casas, "Internet of 

things (Iot) as sustainable development goals (sdg) enabling technology towards smart 

readiness indicators (sri) for university buildings," Sustainability, vol. 13, no. 14, 2021.  

[98]  Y.-W. Lin, T. L. E. Tang and C. J. Spanos, "Hybrid approach for digital twins in the built 

environment.," in Proceedings of the Twelfth ACM International Conference on Future 

Energy Systems, 2021.  

[99]  A. Zaballos, A. Briones, A. Massa, P. Centelles and V. Caballero, "A smart campus' digital 

twin for sustainable comfort monitoring," Sustainability, vol. 12, no. 21, 2020.  

[100]  D. Calì, T. Osterhage, R. Streblow and D. Müller, "Energy performance gap in 

refurbished German dwellings: Lesson learned from a field test," Energy and buildings, 

vol. 127, pp. 1146-1158, 2016.  

[101]  F. Mofidi and H. Akbari, "Intelligent buildings: An overview," Energy and Buildings, vol. 

223, p. 110192, 2020.  

[102]  Y. Pan, M. Zhu, Y. Lv, Y. Yang, Y. Liang, R. Yin, Y. Yang, X. Jia, X. Wang, F. Zeng, S. Huang, 

D. Hou, L. Xu, R. Yin and X. Yuan, "Building energy simulation and its application for 

building performance optimization: A review of methods, tools, and case studies," 

Advances in Applied Energy, vol. 10, p. 100135, 2023.  

[103]  M. Wetter, "Co-simulation of building energy and control systems with the Building 

Controls Virtual Test Bed," Journal of Building Performance Simulation, vol. 4, no. 3, pp. 

185-203, 2011.  

[104]  S. Wang and X. Xu, "Simplified building model for transient thermal performance 

estimation using GA-based parameter identification," International Journal of Thermal 

Sciences, vol. 45, no. 4, pp. 419-432, 2006.  

[105]  S. D'Oca and T. Hong, "Occupancy schedules learning process through a data mining 

framework," Energy and Buildings, vol. 88, pp. 395-408, 2014.  



 
 

This project is supported by:   Page 56 

   
              

 

 

[106]  T. Ahmad, H. Chen, Y. Guo and J. Wang, "A comprehensive overview on the data driven 

and large scale based approaches for forecasting of building energy demand: A 

review.," Energy and Buildings, vol. 165, pp. 301-320, 2018.  

[107]  J. Hu, "A deep learning approach for fault diagnosis in HVAC systems," Automation in 

Construction, vol. 104, pp. 329-344, 2019.  

[108]  Z. Zhang, "Reinforcement learning for energy management in buildings: A survey.," 

Buildings, vol. 10, no. 12, p. 226, 2020.  

[109]  M. Gouda, "Quasi-adaptive fuzzy heating control of a simulated office using a hybrid 

mathematical model," Control Engineering Practice, vol. 14, no. 7, pp. 759-768, 2006.  

[110]  L. Zhang, D. Jeong and S. Lee, "Data Quality Management in the Internet of Things," 

Sensors, 2021.  

[111]  W3C Working Group, Data on the Web Best Practices: Data Quality Vocabulary, 2016.  

[112]  L. C. Günther, E. Colangelo, H.-H. Wiendahl and C. Bauer, "Data quality assessment for 

improved decision-making: a methodology for small and medium-sized enterprises," 

Procedia Manufacturing, vol. 29, pp. 583-591, 2019.  

[113]  ISO 8000-61 - Data Quality Management: Process reference model, 2016.  

[114]  M. v. Dijk, A. P. Vedurmudi, J. A. Sousa, C. Pires, P. Harris and M. Iturrate-Garcia, "A1.2.1 

- Data Quality Metrics for Sensor Networks," 2024. 

[115]  G. D’Aniello, M. Gaeta and T. Hong, "Effective Quality-Aware Sensor Data 

Management," IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL 

INTELLIGENCE, vol. 2, pp. 65-77, 2018.  

[116]  DAMA UK Working Group, "The Six Primary Dimensions for Data Quality Assessment," 

2013.  

[117]  J. Pearce, A. Greenan, A. Smith and C. Elliott, "Relating Composition and Thermoelectric 

Stability of Pt–Rh Alloy Thermocouples," Int J Thermophys, vol. 38:26, 2017.  

[118]  J. Pearce, "A validated physical model of the thermoelectric drift of Pt-Rh 

thermocouples above 1200 ℃," Metrologia, vol. 57, 2020.  

[119]  J. Pearce, "Some predictions of a validated physical model of Pt-Rh thermocouple drift 

above 1200 ℃," Metrologia, vol. 58, 2021.  



 
 

This project is supported by:   Page 57 

   
              

 

 

[120]  Z. Ni, P. Eriksson, Y. Liu, M. Karlsson and S. Gong, "Improving energy efficiency while 

preserving historic buildings with digital twins and artificial intelligence," IOP Conference 

Series: Earth and Environmental Science, vol. 863, 2021.  

[121]  S. Agostinelli, F. Cumo, G. Guidi and C. Tomazzoli, "Cyber-Physical Systems Improving 

Building Energy Management: Digital Twin and Artificial Intelligence," Energies, vol. 14, 

2021.  

[122]  S. Agostinelli, F. Cumo, G. Guidi and C. Tomazzoli, "The potential of digital twin model 

integrated with artificial intelligence systems," in 2020 IEEE International Conference on 

Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power 

Systems Europe (EEEIC / I&CPS Europe), 2020.  

[123]  M. A. Zaidan, Y. Xie, N. H. Motlagh, B. Wang, W. Nie, P. Nurmi, S. Tarkoma, T. Petäjä, A. 

Ding and M. Kulmala, "Dense Air Quality Sensor Networks: Validation, Analysis, and 

Benefits," IEEE Sensors Journal, vol. 22, no. 23, pp. 23507--23520, 2022.  

 

 

 

 



 
 

This project is supported by:   Page 58 

   
              

 

 

 Appendix A 
FunSNM consortium/stakeholder level survey (A1.2.2) (VINS, FORCE) 
 
Dear participants,  
Thank you for participating in this consortium/stakeholder level short survey!  
 

The survey aims to elucidate different data requirements during the lifecycle of a typical network 
node, as well as data requirements for a complete sensor network during the deployment (data 
coverage needed for metrics, methods, results reporting, physical modelling, possibility of soft 
sensor support etc.)   
 

Please fill in this survey based on the current practices in sensor networks you have experience 
with. The goal is to capture current practices and requirements, so that the methods developed 
in FunSNM can be used where they fit best once they are fully developed.   
 

There are only 5 questions in the survey, but please take your time and be as detailed as possible 
in your answers.   
 

Question 1:  
What is your application of sensor networks?   
 

Question 2:  
Describe the different periods/steps of lifecycle of a typical network node in your 
application of a sensor network.   
 
Question 3:  
Describe the data requirements such as amount of needed data, data coverage, other 
indicators of data quality that are expected during the lifecycle of a sensor node. Use each 
of the different periods/steps of a lifecycle you have described in the previous question to 
indicate data requirements. Please be as detailed as possible.  
 
Question 4:  
Describe the typical and/or possible use-cases of your sensor network in more detail along 
with the data requirements that are expected from a deployed sensor network. If 
applicable/appropriate comment on the physical modelling used, and possibility of soft 
sensor support.  
 
Question 5:  
The extent of needed data is different for different sensor networks, influencing operational 
costs and loss-benefits considerations. How is this manifested in your considered sensor 
network example, and what are some mitigation strategies?  
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 Appendix B 
 

Overview of sensor type, calibration model and features, performance metrics, training and test datasets used in the global calibration approach in 

low-cost sensor networks.  

 

  Sensor type Calibration 

model 

Model features Performance 

metrics 

Training and test 

dataset 

Highlighted ideas Research group 

PM2.5 

PM10  

  

Optical nephelometer 

PMS7003 (Nanchang 

Panteng Technology 

Co. Ltd. Plantower, 

China) 

(Huber) linear 

regression 

LCS PM signal, 

relative 

humidity, 

intercept  

mean absolute 

error (MAE) and 

R2. Both short 

term (same 

season) and long 

term (season to 

season) 

performance was 

estimated.  

In field 3 x 10 units x 3 

weeks in 2 seasons 

(winter and summer).  

Ten calibration models that were 

trained on one device, models that 

were trained on two devices, 

models that were trained on three 

devices, and so on. Use of 5 or 

more units in global model 

reduces both interquartile and 

variance intervals in MAE and R2.  

However, the median of both 

metrics remains similar. 

De Vito et al, 2023 

CO Alphasense B4 

Electrochemical 

Limited 

quadratic 

regression 

CO, CO2, T, T2, 

RH, RH2, CO*T, 

CO*RH, T*RH, 

intercept. 

Note that not all 

quadratic 

terms are in the 

feature set 

(hence the 

name limited 

quadratic 

regression) 

mean normalized 

bias (MNB), 

coefficient of 

variation in the 

mean absolute 

error (CvMAE). 

Pearson linear 

correlation 

coefficient (R), 

precision, 

explained 

variance R2, MAE 

(ppb), bias (ppb) 

In field collocations of 

the LCS units with 

regulatory-grade 

monitors. 75% of LCS 

units used for training, 

remaining units for test. 

Up to 3-4 weeks of 

training data. 3-75 days 

testing. 

  Malings et al, 2019 
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CO Temperature-

modulated MOX 

sensor SB-500-12 (FIS 

Inc., Japan) 

Orthogonalized 

Partial Least-

Squares (O-

PLS) with 

Repeated 

Stratified K-

Fold cross-

validation for 
 model 

optimization 

  Limit of 

detection (LOD) 

as per IUPAC 

definition in low 

concentration 

range. 

Performance of 

global models 

built with data 

from 1 to 4 

sensors is tested 

when applied to 

unseen sensors. 

In lab 6 replicas of a 

temperature-

modulated MOX sensor  

exposed to gas 

mixtures of carbon 

monoxide (range 0–20 

ppm) and humid 

synthetic air (range 20–

80% RH at 26 ± 1 ◦C) 

inside a laboratory 

controlled gas mixing 

station.  

  Miquel-Ibarz et al, 2022 

CO2 nondispersive infrared 

(NDIR) CO2 sensor, also 

measures T and RH 

(SST 

Sensing, UK) 

hybrid random 

forest–linear 

regression 

model 

Random forest 

with inputs 

from all sensors 

alongside T and 

RH, which is for 

high 

concentration 

replaced with 

linear model 

(with features 

single sensor 

output 

alongside T and 

RH). 

mean normalized 

bias (MNB), 

coefficient of 

variation in the 

mean absolute 

error (CvMAE). 

Pearson linear 

correlation 

coefficient (R), 

precision, 

explained 

variance R2, MAE 

(ppb), bias (ppb) 

In field collocations of 

the LCS units with 

regulatory-grade 

monitors. 75/% of LCS 

units used for training, 

remaining units for test. 

Up to 3-4 weeks of 

training data. 

If estimated concentration 

exceeds 90 % of the maximum 

concentration observed 

during the training, a linear model 

is used instead of random forest 

Malings et al, 2019 

supplement 

NO Electrochemical 

Alphasense NO-B4 

Neural network 

model with 

single hidden 

layer of 20 

neurons 

inputs from all 

sensors 

alongside T and 

RH 

mean normalized 

bias (MNB), 

coefficient of 

variation in the 

mean absolute 

error (CvMAE). 

Pearson linear 

correlation 

coefficient (R), 

precision, 

In field collocations of 

the LCS units with 

regulatory-grade 

monitors. 75/% of LCS 

units used for training, 

remaining units for test. 

Up to 3-4 weeks of 

training data. 4-93 days 

testing period. 

Overhead of using different 

models can be reduced by using 

single model architecture for all 

gas species, e.g. quadratic models 

or RF with linear model for high 

concentrations. 

Malings et al, 2019 
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explained 

variance R2, MAE 

(ppb), bias (ppb) 

NO Electrochemical 

Alphasense NO-B4 

  

Each LCS unit consists 

of four electrochemical 

sensors: two NO2 

sensors and two NO 

sensors, along with 

temperature (T) and 

relative humidity (RH) 

sensors (Sensirion 

STH21) 

Machine 

learning based:  

Multivariate 

Linear 

Regression 

(MLR), Support 

Vector 

Regression 

(SVR), and 

Random Forest 

(RF) 

Basic model 

has six 

features: 

voltage signals 

of the 4 

electrochemical 

sensors: NO_A, 

NO_B, NO2_A, 

and NO2_B,  T 

and RH.  

Additionally, 

improved 

model includes 

O3 obtained 

from nearby 

monitoring 

stations. 

MAE, R2, and 

RMSE 

In field 4-5 months of 

1h averages. Training 

data-set split into k-

folds (k=5), 1 split used 

for parameter tuning, 

and then models were 

tested on secondary 

units.  

Both models with LCS data inputs 

only  were used, and models with 

additional O3 from nearby 

reference.  LCS data was 

standardized using Z scoring.   

Abu-Hani et al, 2024 

NO2 electrochemical 

Alphasense NO2-B43F 

hybrid random 

forest–linear 

regression 

model 

Random forest 

with inputs 

from all sensors 

alongside T and 

RH, which is for 

high 

concentration 

replaced with 

linear model 

(with features 

single sensor 

output 

alongside T and 

RH). 

mean normalized 

bias (MNB), 

coefficient of 

variation in the 

mean absolute 

error (CvMAE). 

Pearson linear 

correlation 

coefficient (R), 

precision, 

explained 

variance R2, MAE 

(ppb), bias (ppb) 

In field collocations of 

the LCS units with 

regulatory-grade 

monitors. 75/% of LCS 

units used for training, 

remaining units for test. 

Up to 3-4 weeks of 

training data, testing 4 

to 110 days. 

If estimated concentration 

exceeds 90 % of the maximum 

concentration observed 

during the training, a linear model 

is used instead of random forest 

Malings et al, 2019 

NO2  electrochemical 

Alphasense NO2-B43F 

  

Machine 

learning based:  

Multivariate 

Linear 

Basic model 

has six 

features: 

voltage signals 

MAE, R2, and 

RMSE 

In field 4-5 months of 

1h averages. Training 

data-set split into k-

folds (k=5), 1 split used 

Both models with LCS data inputs 

only  were used, and models with 

additional O3 from nearby 

Abu-Hani et al, 2024 
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Each LCS unit consists 

of four electrochemical 

sensors: two NO2 

sensors and two NO 

sensors, along with 

temperature (T) and 

relative humidity (RH) 

sensors (Sensirion 

STH21) 

Regression 

(MLR), Support 

Vector 

Regression 

(SVR), and 

Random Forest 

(RF) 

of the 4 

electrochemical 

sensors: NO_A, 

NO_B, NO2_A, 

and NO2_B,  T 

and RH.  

Additionally, 

improved 

model includes 

O3 obtained 

from nearby 

monitoring 

stations. 

for parameter tuning, 

and then models were 

tested on secondary 

units. 

reference. LCS data was 

standardized using Z scoring. 

O3 Alphasense B4 
 electrochemical 

hybrid random 

forest–linear 

regression 

model  

Random forest 

with inputs 

from all sensors 

alongside T and 

RH, which is for 

high 

concentration 

replaced with 

linear model 

(with features 

single sensor 

output 

alongside T and 

RH). 

mean normalized 

bias (MNB), 

coefficient of 

variation in the 

mean absolute 

error (CvMAE). 

Pearson linear 

correlation 

coefficient (R), 

precision, 

explained 

variance R2, MAE 

(ppb), bias (ppb) 

In field collocations of 

the LCS units with 

regulatory-grade 

monitors. 75/% of LCS 

units used for training, 

remaining units for test. 

Up to 3-4 weeks of 

training data. 2-76 days 

testing period. 

If estimated concentration 

exceeds 90 % of the maximum 

concentration observed 

during the training, a linear model 

is used instead of random forest 

Malings et al, 2019 

VOCs MOS gas sensor 

(SGP40, Sensirion AG, 

Stäfa, Switzerland) 

Deep transfer 

learning model.  

Deep neural 

network with 10 

layers, input is 4 

(gas sensitive 

layers) x1440 

array ( 144 

seconds x 10Hz 

sampling) 

RMSE 

  

15 – 40 ppb 

across various 

species of VOCs, 

110 ppb for CO,  

50 ppb for H2.  

In lab multiple 

unique gas mixtures 

(UGM) were randomly 

defined based on 

predefined 

concentration 

distributions with Latin 

hypercube sampling. In 

total, 906 UGMs were 

set, exposing all three 

SGP40 sensors 

  Robin et al, 2022 
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simultaneously for 

1440 seconds, yielding 

an overall calibration 

duration of more than 

15 days. 

VOCs Alphasense (UK) 

photoionization 

detector 

NA NA NA NA NA Malings et al, 2019 
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 Appendix C 
 

 

Evaluation of levels for models and digital twins as proposed by Den et al. [5] 

 

Figure 1: Evolution of BIM to digital twins. Copied from [5] 

 

Framework for deriving a digital twin as proposed by Yoon [14] 

 

Figure 2:Copied from [14] 
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Tools utilized for building simulation according to [17] 

 

 

 

 

 

 

 

 

The concept of a digital twin according to [17] 
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The role of simulations in digital twins according to [17] 
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