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1 Introduction

As sensor networks become easier to acquire and deploy, and consequently are more
common in almost all industries and in everyday life, so ensuring the trustworthiness and
reliability of measurements and data in such systems becomes more challenging. Not only
as the numbers of sensors grow, but also as the inaccessibility of sensors means it is
infeasible to use established methods for their calibration, so the difficulties of assessing
measurement uncertainty in sensor networks and establishing the traceability of
measurements made by such systems increases. Furthermore, due to the large volumes of
data, it is a challenge to validate the quality of data collected from sensor networks, and it is
infeasible to do so without automated, efficient, and reliable methods.

The purpose of this guide is to help address the challenge of ensuring data quality for sensor
networks. It is structured in two main parts, one related to data quality metrics and one to
traceability.

The part on data quality metrics (Section 2) provides guidance on the importance of data
quality when collecting large amounts of data from sensor networks where there is less
control over the sensor environment as well as the management and architecture of the
sensor network, for example, compared to a laboratory setup. This includes choosing which
dimensions of data quality are most important depending on the use case, managing data
requirements during the lifecycle of sensor nodes, and developing ways to measure and
quantify data quality.

Different use cases have different metrological needs when it comes to traceability. The part
on traceability (Section 3) addresses Sl-traceability in sensor networks, providing guidance
on different ways of calibrating sensors in sensor networks such as in-situ, self- and co-
calibration. Furthermore, it addresses the challenge of making methods of analyzing sensor
data uncertainty-aware, for example, for sensor fusion, and using different modelling
techniques, for example, digital shadows and digital twins.

Different use cases are used as examples in different sections of the guide. The use cases
are district heating networks, heat treatment of high-value components in advanced
manufacturing, gas flow meter networks, air quality monitoring sensor networks and smart
buildings. These are used to highlight certain challenges, needs, and both commonalities and
differences in certain types of sensor networks within the different subjects covered in the
guide.
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2 Data Quality Metrics in Sensor Networks

2.1 Data quality metrics for sensor networks

This section of the guide discusses approaches to evaluate the quality of a sensor network
dataset. Evaluating application quality is important to allow the development of sensor
applications that are resilient and robust, and to make sound decisions based on the
underlying sensor data quality. Several data quality dimensions have been identified,
whereby different aspects of data quality, such as accuracy, consistency, and completeness,
are measured. Sets of data quality dimensions can be used, thus, to assess the quality of a
dataset. When designing a sensor network, it is crucial to keep the dimensions of data quality
in mind and potentially adjust the design of the sensor network to optimize the quality of the
data. Indeed, the higher the quality of the data, the more reliable the results of further
analyses will be.

An overview of the data quality metrics identified after performing a literature review is
included in the following subsection. Only the metrics considered most relevant for sensor
networks by the authors of this report are described. Hence, the list of metrics provided is
by no means exhaustive. For example, in [1] many more data quality metrics are considered
besides those listed in this report such as drop rate, accessibility, compliance, etc.
Furthermore, examples and data quality metrics important for the project use cases are also
included.

2.1.1 Relevant data quality metrics from the literature

2.1.1.1 Consistency

As defined in [2], consistency refers to the absence of apparent contradictions in a database.
Consistency is a measure of the internal validity of a database and is assessed using
information that is contained within the database.

Consistency metrics help assess whether the values in a data set are consistent with the
values previously recorded and stored. Consistency allows the improvement of data quality
by ensuring all data remains constant. One important consistency measure is date
consistency, which measures how many dates in a data set fall outside of their historical
range, i.e. the time interval for which data have been measured/collected. Numeric
consistency can tell how many values in a data set differ from the expected range.

In [3] consistency is described in terms of constraints, as the degree to which defined
constraints are adhered. These constraints can be used, for example, to check whether a
value is within a specific range or if values fall inside logical bounds (such as a humidity sensor
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that should provide only positive values). Consistency can be quantified by the percentage of
values in the dataset that satisfy the defined constraints.

2.1.1.2 Accuracy
[4] describes accuracy as the degree to which data correctly represents the true value. In
practice, the true value is often unknown. Hence, it is often required to determine a reference
value in order to assess the accuracy of the data. The reference value can for example be
obtained from a reference sensor, or from an aggregation of multiple sensors that measure
the same quantity.

[5] quantifies accuracy simply by the fraction of fields judged “correct” (or the fraction of
“correct” records, in case each datapoint contains multiple fields). Correct fields can for
example be defined according to a rule-based evaluation, where a field is deemed correct if
the difference with the reference is small enough. See for example [6].

In [7] and [8], accuracy of a measurement value v is defined as the maximum absolute value
a, such that the real value (reference value) lies in the interval [v — a, v + a]. Note that this is
an absolute metric, rather than a relative metric.

A general approach is described in [9], where the accuracy is calculated according to the
distance between the measured quantities and the reference quantities D(v,v"). The
distance function is zero in case of v = v" and positive otherwise. The metric is defined as

1

accuracy = 1+D—(vv’)

In this definition, the perfect score for accuracy equals 1 and the closer the metricis to O, the
worse the accuracy of the data is.

2.1.1.3 Completeness

[10] describes completeness as referring to whether all required data is present, that is,
whether any data required to deem the dataset fit-for-purpose is missing or not.
Completeness of data ensures that all the information needed to run quality analytics and
artificial intelligence (Al) exists. Typically, completeness is quantified as the ratio of missing
values compared to the total number of values at the dataset, column (i.e. attributes) or
record levels; [3], [7], [8].

2.1.1.4 Auditability

In [4], auditability (in this paper referred to as traceability) is defined as “the degree to which
data has attributes that provide an audit trail of access to the data and of any changes made
to the data in a specific context of use”. In other words, auditability allows to trace back where
the data comes from and to track how the data has been changed over time. Having the
appropriate metadata, for example, can provide auditability to a dataset. A metric to quantify
auditability is the percentage of data that cannot be traced, see [11].
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2.1.1.5 Timeliness

In [7] timeliness was interpreted in the context of sensor data streaming applications, as the
difference between its recording timestamp and the current system time. In contrast to other
data quality dimensions, timeliness takes an exceptional position as it can be calculated at
runtime and must not be recorded, propagated, and processed during the data processing.
In practical applications timeliness needs to be defined in a contextual manner [8] as the
punctuality requirements of data depend on the task at hand.

In [1] other time-related dimensions include currency and volatility. Currency focuses on how
quickly the corresponding data are updated when they occur in the real world, and volatility
indicates how often the data changes over time. [6] describes volatility as the length of time
for which data remains valid, whereas currency is defined as

currency = (treal - tideal) + (tarrive - tideal)r

where tigeq 1S the ideal sampling time, t.., is the actual sampling time, and t,ive iS the time
needed to record the data.

2.1.1.6 Uniqueness

Uniqueness of a dataset refers to the absence of duplicates in a dataset. Hence, unigueness
can be measured by the number of duplicates present in a dataset. [12] quantifies
unigueness as the percentage of records having a unique primary key. Unique primary key
refers to the value of a row/record in a dataset making that row unique. Duplicates of primary
keys are undesirable, but some measurements can be repeated if the state doesn't change,
although multiple repetitions can indicate a stuck sensor. An example of a primary key could
be a timestamp in a timeseries dataset.

2.1.1.7 Correctness

Correctness refers to how well the data values correspond to actual values. It can be
separated into two aspects: semantic correctness and syntactic correctness. In the context
of metrology, semantic correctness is about conformity between measured values and the
actual values, i.e., correctness of the content, like accuracy. For instance, validating a dataset
for semantic correctness can involve checking if the physical quantities (length, mass, etc.) in
a particular dataset deviate from the expected values. Syntactic correctness is about the
correctness of the form or structure. It could, for example, be data format and units or
dimensions. The digital calibration certificate, for instance, requires calibration data to be
presented in a specified machine-readable format [13]. Adhering to this format can be
considered a form of syntactic correctness.

2.1.1.8 Reusability

Reusability refers to the data being understandable and useful to others. It includes
comprehensibility and consistency. Comprehensibility refers to the quality and existence of
metadata and being readable and uniformly represented. Consistency meaning the absence
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of contradictions in the data and with referential integrity between the data and any
metadata or other reference data and standards.

Moreover, reusability is one of the foundational FAIR data principles. FAIR stands for
Findability, Accessibility, Interoperability, and Reuse. The principles emphasize machine
readability of data because humans are relying more and more on computers for handling
data, due to increase in speed of data generation, as well as increase in volume and
complexity.

2.1.1.9 Redundancy

In [14] several metrics are discussed to evaluate the metrological redundancy in a sensor
network. It is argued that a higher degree of redundancy is desired, as it makes the network
resistant to sensor failures. Three different types of metrological redundancy are discussed:
sensor replication, sensor relevance, and network redundancy. For each type of redundancy,
multiple metrics are proposed.

Sensor replication considers the relationship between sensors: can readings of one sensor
be derived from readings of other sensors? If there is sensor replication in the network,
sensor readings can be aggregated, leading to data reduction and smaller measurement
uncertainty. Three metrics are proposed to evaluate sensor replication:

e Rank (the number of linearly independent rows or columns of the matrix): the rank of
the matrix containing all sensor signals provides a discrete scale between zero and
the number of signals on the replication of the sensor signals. A rank equal to the
number of sensor signals indicates no replication between the sensor signals.

e Condition number: the condition number of the matrix containing all sensor signals
quantifies the linear dependency, and thus the replication, between the different
signals. A condition number equal to 1 indicates orthogonality (so no replication
between the sensor signals) and a condition number equal to infinity indicates linear
dependency (so exact replication between the sensor signals). The user does need to
decide on a matrix norm. A common choice is the 2-norm, but also the 1-norm and
inf-norm are possible choices. The condition number under the inf-norm is typically
larger compared to the 2-norm, but is also evaluated more easily.

e (luster: sensor replication can also be evaluated by clustering the sensor time series,
using a measure of 'distance’ between two time series. The silhouette scores of the
sensors can be calculated and the number of sensors with a score of, for example,
0.5 or 0.7 or any other appropriate value between 0 and 1, can be determined. The
metric can be defined as the fraction of sensors with silhouette score higher than the
threshold. A higher fraction indicates more replication between the sensors. Special
consideration should be given to the construction of the clusters, as this will influence
the metric.
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Sensor relevance quantifies whether a sensor is relevant with respect to the measurand(s)
and is determined for each sensor individually. If a sensor is irrelevant, it can be removed
from the network without changing the estimate and uncertainty of the measurand(s). Two
metrics are proposed to evaluate sensor relevance:

Sensitivity coefficients: the sensitivity coefficient ¢; can provide information about the
relevance of sensor i. A discrete metric would deem sensor i relevant when ¢; # 0. A
continuous metric determines the proportion of the uncertainty of the measurand y
that comes from the data x; of sensor i: |¢;|u(x;) /u(y). The higher this value, the more
relevant this sensor is. The sensitivity coefficients can be determined either
algebraically or numerically, depending on the availability and form of the model
function. The authors concluded that this metric is particularly suited for small models
that require a small number of input data, as it is difficult to interpret the results if
there are too many sensor values influencing a single output value.

Pearson's correlation: sensor relevance can also be evaluated by Pearson's
correlation coefficient between the known reference or training values of the
measurand(s) and (a feature of) the sensor data. The higher the absolute value of the
correlation coefficient is, the more relevant the sensor is. The Pearson correlation
coefficient is the ratio between the covariance of two variables and the product of
their standard deviations and measures the linear dependency between two sets of
data. If a sensor or a derived feature of the sensor data is relevant for the measurand
in @ non-linear way, this metric may not detect this.

There is redundancy in a network if the measurand can be determined from different subsets
of sensors. This requires that there is sensor replication of the relevant sensors. The paper
provides two metrics to quantify network redundancy:

Excess sensors: network redundancy can be assessed by the number of excess
sensors present in the network in addition to the minimum required sensors
necessary to determine the value of the measurand. The more excess sensors, the
higher the network redundancy.

Uncertainty increase: another way to assess network redundancy can be by
determining the maximum increase in uncertainty of the measurand, after removing
m relevant sensors from the network. The lower this value, the less the network relies
on one or a few sensors, so the higher the degree of redundancy.

2.1.2 Data quality metric examples of the project use cases

This section considers different metrics for quality, divided in three subsections below, and
how they relate to the different use cases used as examples throughout the guide. Not all
use cases are exemplified in each of the categories.
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2.1.2.1 General metrics

To measure the relevance and usefulness of sensor network data, different general metrics can be
used, such as consistency, accuracy, completeness, auditability, integrity, timeliness, uniqueness,
and cost. Some of these metrics have been described in detail above. Depending on the use case
some metrics might be more useful than others.

As an example for the district heating use case, completeness and time resolution are the
most important metrics, because when data is incomplete, it becomes difficult to analyze,
due to correlation between flow and temperature at sensor points. Additionally, integrity is
also an important metric, as the sensor nodes are located inside the private property, and it
is difficult to access and verify if the installation is correct and no strange effects are present.

For the other use cases, accuracy, traceability, completeness and timeliness are referred as
the most important metrics.

2.1.2.2 Metrics for number and quality of sensors

Different metrics can be used as a basis for optimizing the design of a sensor network in
terms of number and quality of individual sensors. As mentioned before, depending on the
use case and type of network some metrics are more relevant than others.

For the use case on district heating, information on accuracy is used, as well as number of
heat meters and distance (pipe length) between the heat meters. The network model is also
important, and the quality of this model can vary, for example, if individual coordinates on
strings can properly fit each other at the connected end point. Additionally, temperature
measurements from sensors in the network are compared to high-end, calibrated sensors.

For environmental monitoring the exploratory studies show that if the objective is
monitoring, at least one most-exposed site and one least-exposed site, must have sensors,
and additional sensors depend on population density, whereas if the objective is
characterization, one sensor is placed close to the source and several sensors are installed
to study the decay of the source.

For smart buildings, sensors are placed at each window/door/heater, so the number of
sensors depends on the number of windows, doors, and heaters. The number of rooms is
defined in such a way, that results with respect to e.g., user behavior, are statistically
representative for a building. The number and variety of buildings is selected in such a way,
that the buildings are representative for German office buildings with construction years
between 1970 and now. The quality of individual sensors corresponds to quality applied in
normal offices. Reason for this is that the developed methods should not require high quality
sensors, since this would be a strong limitation for large scale deployment.
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Finally for industrial manufacturing, the main requirement is sufficient temperature sensors
that adequately capture the range of temperatures arising from temperature gradients in
the heat treatment furnace, and for natural gas transmission accuracy and precision are the
key parameters.

2.1.2.3 Consistency and redundancy metrics

To describe the consistency of individual sensors and redundancy of sensor in networks
different metrics are available but across the exemplified use cases similar approaches can
be used. One approach is to a comparison with typical expected values, using a reference
meter or traceable calibrated sensors to validate individual sensors. Another approach was
to conduct a comparison with other sensors, in the same space, to detect inconsistencies in
the measurements.

2.1.2.4 Shortcomings in current metrics

From a metrological perspective the different metrics mentioned in the above sections have
certain shortcomings. The value of uncertainty is not always available, and there is often
missing information related to the installation and initial calibration certificates. Also, the
quality of deployed sensors is not always the best and there are no duplicate measurements
available for verification.

2.2 Data requirements in a sensor network

This section of the guide discusses data requirements for sensor networks both for the
complete lifecycle of a typical network node as well as for the complete sensor network. A
typical sensor lifecycle may include steps of factory calibration, field calibration, development
of multi-predictor calibration models (in case of multi-sensor nodes or soft sensor
capabilities), deployment and continuous operation, periodic recalibration (e.g., machine
learning (ML) retraining/continual learning), end-of-life or repurposing. Each of the stages
have different data requirements and produces different insights into sensor performance
from a metrological standpoint. Furthermore, extent of needed data is different for different
sensor networks, influencing operational costs and loss benefits considerations. In the
following subsections two use cases are used to describe data quality requirements.

Air quality sensor networks enable continuous monitoring for reporting and facilitating the
creation of spatial interpolations for key air quality parameters. These networks can produce
high-resolution maps of PM,s concentrations, offering valuable insights into air pollution
distribution. Pervasive air quality monitoring can be used in both fixed and mobile nodes.
The primary aim is to generate high-resolution spatial and temporal data on air quality Low-
cost sensor air quality monitoring network nodes can be calibrated effectively using a range
of ML algorithms, from basic models to advanced technigues.
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Use of sensor networks in industrial applications includes exploratory use of multi-wire
thermocouples for possible in-situ drift detection. Each wire has a different Pt-Rh
composition. Each pair of wires formed an individual thermocouple. In e.g, a 5-wire
thermocouple, there are 10 possible pairs of wires and so 10 thermocouples., each with a
different calibration drift rate. Approaches using data mining, physical modelling, and a
combination of the two offer the possibility of deducing the calibration drift in-situ.

2.2.1 Data requirements expected during the lifecyle of a sensor node in a
specific sensor network application

a) Because each phase of a sensor node lifecycle has different data requirements, it is
important to understand and identify each of them. A typical lifecycle of a sensor node
in an air quality sensor network includes the following phases: Integration of the
sensor node: this phase is the node fabrication step in which transducers, analog
front end, microcontroller boards, charging board, battery, and data transponders
are connected and integrated with microcontroller firmware to become a full featured
sensor node.

b) Characterization of sensor node response to chemical/physical pollutants in lab
conditions: in this phase, information about sensor response model (linearity,
sensitivity, limit of detection, response time, etc.) are collected. Typically, though they
may depend to a certain extent from the specific sensor node, they are collected for
a very limited number of devices (1-3) and generalized.

C) Pre-deployment for calibration data gatherings: In this phase the sensor is collocated
in field conditions together with a reference analyzer to provide a reference dataset
for data driven calibration derivation.

d) Calibration: it is the process of deriving a transducer model for translating raw data
in actual pollutant amount of substance fraction or concentration data. This phase
may include the factory calibration, field calibration (based on co-location with
regulatory air quality monitoring stations) or the development of multi-predictor
calibration models based on ML approaches. During operation, periodic field
recalibration is recommended, which can be further used to determine the level of
performance and/or stability over time.

e) Deployment: in this phase the sensor node is installed in operational conditions for
fulfilling actual data gathering.

f) Data gathering and processing: this phase is the main part of the operative
deployment and represents the actual data gathering, processing and transmission
of the quantity measured data to operative control.
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Many of these lifecycle phases will be part of other sensor networks used in different
applications, such as industrial applications (see the brief description of the use case of
sensor networks for industrial applications included in the introduction of this section).

Data requirements expected during the lifecycle of a sensor node in a specific application of
a sensor network. Factory calibration for air quality sensor node(s) (particularly, low-cost air
quality sensor node that estimates particulate matter concentration, or gaseous pollutant
amount of substance fractions) may consist of a simple zero check, such as one data point
check or similar. This step usually has very limited data requirements, usually only a few data
points.

Field calibration serves to test the sensor in real word operating conditions. For air quality
sensor field calibration, is usually conducted by collocating sensor nodes with reference
instruments (e.g., regulatory automatic monitoring station), and simultaneously collecting
data from sensor nodes and reference instruments. Collocation typically lasts few weeks
(about three weeks is the recommended period in the literature), in order to capture enough
dynamic range of the air quality parameters of interest. After a four or five-deployment period
of the sensor node, it is recommended its recalibration by collocation with the regulatory
reference instruments (maximum every six months during three weeks). Data requirements
are the following: both the data from the sensor node being calibrated and the data from a
reference are required to compute the calibration model. According to the literature, the
most commonly used is a simple linear regression model. Data requirements for more
complex calibration models could be more demanding. Quality of calibration is typically
reported via the coefficient of determination (r?), the Root Mean Square Error (RMSE) and the
Mean Absolute Error (MAE). The calibration models are considered valid if the sensor node
is used in conditions that are similar to the conditions in which the sensor was calibrated.

Use-case of air quality sensor network: In this application, when taking the entire lifecycle of a
sensor node into consideration, requirements are linked to the characterization of the
sensor node response including.:

a) Full response to at least the target pollutant(s) and primary interferents (i.e., forcers, such
as CO and temperature) in at least two different quantitative levels are required. Typically,
half an hour of THz float readings for the raw data samples for each single exposure cycle
characterized by a quantitative level forcers tuple, is needed. After this first step, to fully
characterize the sensor node response, a Latin hypercube exploration of the combinations
of the different quantitative levels of the forcers is recommended. Raw data sample for each
transducer may be a single scalar value (i.e., electrode potentials for electrochemical sensors)
or vector (see temperature modulation MOX sensors).

b) In the deployment phase the single node is expected to output a stream of amount of
substance fraction data with sampling frequency of 0.1 to THz. Data tuple typically include at
least two or three gas amount of substance fraction readings, and a measure of primary
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environmental drivers (e.g., temperature and relative humidity). Depending on the final data
application, wind direction and wind speed might be needed. Data coverage should exceed
95%. The most important requirement is accuracy. In EU, reference guides do exist and
measure the accuracy in terms of relative expanded uncertainty of the node in relevant
ranges of concentrations.

Use-case of a thermocouple sensor network contains simple data format in the form of
temperature versus time. The time interval is highly variable but typically 30 seconds or 1
minute, for time scales of between days and years. The scatter is generally low, within about
0.2°C. There are generally multiple channels, each channel representing one thermocouple
from two to more than 50.

2.2.2 Typical and possible use cases of a specific sensor network

Some typical use cases of air quality sensor networks include mapping of urban air pollution,
which if the network is dense enough can be achieved by spatial interpolation. Data
requirements in this example may be sufficient data coverage for obtaining representative
averages, and sufficient spatial density, since kriging itself will introduce error if the estimate
is not based on a sufficient number of data points.

The networked devices are typically used in two deployment modes: mobile and fixed. Use
cases for mobile deployment include pervasive emission monitoring (along the streets),
pervasive air quality monitoring, personal exposure monitoring, etc. They differ in terms of
data quality level and sampling frequency parameters. Personal exposure requires sampling
frequency in the range of one sample per 30 sec or minute. Mobile monitoring with bicycles,
cars, or buses requires several samples per minute (ca. 10), this allows for a sufficient spatial
resolution. Coverage can be more stringent especially when pursuing single pass routes.
Fixed deployments include pervasive air quality monitoring for high spatial resolution
information integrating the regulatory grade network with low-cost sensor systems. Data
requirements have already been described above. In both cases, sampling averaging
procedures with raw sampling in the range of several samples per second will allow for
implementation of noise reduction algorithms.

Use case of industrial temperature sensor network: This use-case is primarily high-value heat
treatment processes. This encompasses areas such as aerospace and automotive, where the
sensors are required to exhibit high stability, i.e., low calibration drift, in harsh environments
with temperatures up to 1500 °C for long time periods up to years. Here, physical modelling
is being used in one of the potential approaches to deploy multi-wire thermocouples (the
drift is mainly caused by vaporization of Pt and Rh oxides which results in changed local wire
composition). Also, data mining approaches are being investigated, and hybrids of the two
approaches.
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2.2.3 Extent of needed data in specific sensor networks

In air quality monitoring, sensor network’s lack of data coverage can disrupt reporting. Some
common problems can be met with mitigation strategies such as duplication of sensor
nodes. Field calibration campaigns can fail to produce sufficient data to give confidence in
derived calibration models. This can be mitigated by increasing the duration of the calibration
effort. However, monitoring the uncertainty of sensors over their lifetime in such application
scenarios is challenging.

Air quality monitoring sensor networks can play a crucial role in administrative decisions.
Accuracy is a mandatory requirement that can be attained to a certain extent with low-cost
sensors in a trade off with costs. While low-cost sensor systems remain an attractive solution,
ensuring their accuracy through current state-of-the-art in-field calibration methods can
significantly increase costs. Thus, while sensors themselves are affordable, achieving high
accuracy requires additional investment. Several strategies are under study to allow for a
feasible way to guarantee accuracy including multiunit (universal) calibration coupled with
calibration transfer strategies [15], which reduces the number of samples used for
(re)calibration of each unit. Another solution under study implies the use of continuous
recalibration strategies using distant reference grade monitoring station data as reference,
hence avoiding field colocation and saving on the logistics costs. However, long term and
general figures on the attainable accuracy are rare in literature and unavailable for
commercial systems.

2.3 Data quality and validation: Methods, Processes, and Best
Practices

This section explores how to perform data validation, i.e., ensuring data is “fit-for-purpose”
and of high enough quality. The exact definition of “high quality” can vary from case to case
and there are many different approaches to defining, validating, and maintaining it. There is
however no doubt that data quality is an important subject. In today's world where Big Data,
Artificial Intelligence (Al), Internet of Things (IoT), sensors etc., are becoming more and more
common in society - not only for research and big companies - it is becoming more and
more important that the vast amounts of data being collected and exploited, meets the
quality required for its application. There are several risks involved in analyzing data as well
as in drawing conclusions and taking decisions based on data of poor quality. For the creation
of data quality requirements and data validation rules it is important to have a good
understanding of the data itself. From here it is necessary to prioritize which data is most
important and which characteristics of the data are most important. Subsequently, rules and
metrics should be applied to data relevant for those, i.e. some rules might only be applicable
to certain data.
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2.3.1 Importance of data quality

It is important to make sure data is of high quality due to risks of drawing wrong conclusions
or taking the wrong decisions based on data of poor quality. Data quality needs to meet the
needs and expectations of data consumers, creators, and other stakeholders. Risks are a
large factor in assessing data quality from both business and health perspectives depending
on the system, for example, in gas flow meter (or sensor) networks.

In sensor networks errors can originate from many sources, e.g., architectural, data flow,
edge devices, data transfer and processing, cloud, storage, and analysis. Possible correlations
and relationships, both temporal and spatial, between sensors and measurements can also
give rise to both challenges and insights. It is important to monitor any issues related to
sensor data and address these as they arise.

2.3.2 Variations of data quality dimensions

The data quality dimensions vary from source to source both regarding the number of
dimensions as well as the terminology itself for each dimension where the meanings are
sometimes mixed between dimensions and overlap with each other.

Table 1: Overview of selected sets of data quality dimensions.

Source Dimensions Note

[16] 14 Hierarchy with two layers (5 in first layer, 14
in second layer)

[17] 21 Dimensions in total, from literature review.

[1] 24 Dimensions in total, from literature review.

[10] 8 Common dimensions. Mentions a few more.

[18] 4 Core dimensions

[19] 15 Separated in two points of view: inherent,
system dependent. Some dimensions are in
both.

[20] 18 Grouped in 4 categories. Literature survey

[21] 20 Grouped in 4 categories. Literature survey

As seen in the table above there are many variations when it comes to data quality
dimensions. A subset of the data quality dimensions is recurring and has commonly agreed
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definitions such as accuracy and completeness, while others only appear in one or few
sources. Furthermore, some dimensions vary in the way they are defined. Not all sources
have time series or sensor networks as their focus and instead look broadly at data in
general. The literature review of [1] has a focus on I0T related papers and it is thus relevant
when looking at sensor networks.

2.3.3 Existing approaches

Several approaches exist for performing data validation and defining data quality
requirements. Data quality dimensions are at the center of defining data quality
requirements, and as seen above, there exist many different versions of these along with
different approaches to work with data quality. Researchers and different types of
organizations address different aspects, methods, approaches, and processes for
performing data quality management in general. The following subsections will briefly
describe some standardized processes for data quality management. These are also used as
inspiration for some of the best practice approaches described later.

2.3.3.1 ISO 8000-61

The I1SO 8000 series is a series of standards for data quality management. Specifically, ISO
8000-61 describes an overall approach to data quality management. The core process cycle
of ISO 8000-61 is based on the Plan-Do-Check-Act cycle of ISO 9000 which is a well-known
series of standards on quality management systems.

The ISO 8000-61 process consists of three areas where the first is “Implementation”
consisting of a modified version of the Plan-Do-Check-Act cycle. The second and third areas
are Data-Related Support and Resource Provision, which support the core process cycle. The
full model can be seen in Figure 1.
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Figure 1:1SO 8000-61 data quality management process.
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The Implementation process follows the cycle where Data Quality Planning is the first step,
then Data Quality Control, Data Quality Assurance, and finally Data Quality Improvement
before the cycle repeats. The Data-Related Support process enables the Implementation
process with information and technology related to data management and the Resource
Provision process improves the efficiency of the two other processes by providing resources
and training services on an organizational level. Within the model described in Figure 1, there
are 20 lower-level processes which will not be described here, but it should be noted that
Requirements Management is the first of the lower-level processes and is where data
requirements are defined.
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2.3.3.2 Methodology for data validation
The Methodology for Data Validation from the European Commission describes a process’
life cycle to define and execute data validation (see

Review Design
Analysis of feedback from Study of datasets, variables, and
stakeholders their relations
Identifying and prioritizing Assess quality requirements
problems

Satisfactory set of validation rules

Execute Implement

Data are checked against the Validation rules are formalized

validation rules
Metrics for data validation rules

Measure results ; i
Testing and evaluation of results

Refinement of validation rules

Figure 2.

Figure 2: Data validation process life cycle from [22]

The cycle has four main phases and starts with the design of the data validation process. The
Design phase includes the familiarization with the dataset (through the study of the datasets,
variables, and their relations) and the assessment of quality requirements, as well as the
definition of data validation rules. In the Implementation phase, the validation rules are
described, formalized, tested, refined, and discussed by stakeholders. In the Execution
phase, data is checked against the validation rules and the results are measured and
quantified. The final phase is the Review phase where the validation rules are improved,
based on the feedback from stakeholders, before the cycle can start over.
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2.3.3.3 DAMA International

The Data Management Body of Knowledge (DMBoK) of DAMA International (a global Data
Management organisation) [10] is concerned with everything related to data management.
Data quality is one of the knowledge areas in the Data Management Framework. The DMBoK
goes through what Data Quality Management is, what the activities are, as well as both the
inputs for those activities and the outcomes. It also describes different tools, techniques, and
metrics. It gives some examples of rules and metrics but is mostly concerned with
organizational aspects, the framework, procedures, people, etc. around these.

Thus, in the context of metrology, DMBoK is too high level but the activities described therein
are relevant for best practices in defining data quality requirements and working with it in
general. The activities mentioned include defining what high quality data is, defining the
critical data and business rules, and doing an initial quality assessment.

The DMBoK also highlights the Plan-Do-Check-Act cycle as the Data Quality Improvement Life
Cycle (see Figure 3. This cycle is used to improve data quality and it starts by scoping and
prioritizing data issues in the planning step. Then in the “Do” step, root causes of issues are
addressed and a plan for continuous monitoring is made. The “Check” step is about actively
monitoring data quality as it is measured against requirements. If data quality falls below
accepted levels additional actions must be taken to reach acceptable levels. The “Act” stage
involves activities for addressing and resolving emerging data quality issues. When issues are
assessed and solutions proposed, the cycle restarts.

Figure 3: Plan-Do-Check-Act cycle from [10].

2.3.4 Defining data quality metrics
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A data quality requirement or a data quality rule needs to be translated into a metric that
can be measured. Ideally, the metric is presented in a machine-interpretable form to enable
its processing by automated systems [9]. Within each data quality dimension, several
different metrics can be defined. Defining metrics is about figuring out how to quantify or
how to measure a certain requirement. Below are a few examples of rules and corresponding
metrics. Each example uses a data quality dimension as the foundation and exemplifies a
rule within the given dimension and a metric for calculating it. The thresholds in the examples
are randomly chosen. In a real-world scenario rules, metrics, and threshold values would
depend highly on the use case.

Summary of defining metrics (continued from the defined requirements):

Make sure the requirement or rule is quantifiable and measurable
Identify the variables for the metric

Identify relationships between variables

Adjust to give the correct output format or unit

N -

Example 1
Dimension: Completeness

Rule: Missing data: No less than 95% of data points should be present in the time series

actual number of rows

L . 0r] —
Metric: time series completness [%] Thooretical number ofraws < 100

Description and example: Given a start and end time, as well as a frequency of
measurements for a given sensor, the theoretical number of rows can be calculated. For
example, one measurement per minute from 1 April to 30" April (both included), will give
43200 data points, theoretically. If for example the actual number of data points is 42000 it
means 1200 data points have been lost and gives a completeness of ~97.2% and the
completeness lives up to the 95% requirement. (The scope of this rule is a time series from
one sensor, but its scope could easily be extended to a sensor network collecting data from
multiple sensors).

Example 2

Dimension: Accuracy
Rule: No more than 1% of values in a time series should be beyond absolute threshold for
reference sensor

number of values in time series beyond threshold

x 100

Metric: sensor accuracy [%] = — .
number of values in time series

Description and example: Taking a time series of sensor values and comparing them to the
time series of a reference sensor (the two time-series should of course be aligned (i.e., same
start and end time, same measurement frequency, etc.). With a defined threshold of, for
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example, +1°C, the difference between a sensor value and its corresponding reference value
cannot go above or below the threshold. The rule then says to count the number of values
exceeding the threshold and see if this is more than 1% of the total number of values in the
time series.

Example 3

Dimension: Timeliness or Currency
Rule: The interarrival time between sensor measurements cannot exceed 30 minutes.
Metric: sensor timeliness [Minutes| = timestamp,, — timestamp,,_;

Description and example: Depending on the focus, this rule can both be related to timeliness
or currency. Timeliness can be viewed as the time from sensor measurement to it being
stored in the database and then made available to the user. This rule checks the time passed
from the most recent measurement and the measurement immediately before that. If this
duration is too long it might violate the timeliness. This could be due to long transmission
time between the edge device, gateway, and server. If data quickly becomes outdated due to
quick changes in the environment of the sensor, a long time span between measurements
might also violate currency requirements since the latest measurement has been outdated
before the next one arrives. Also, if the new measurement arrives late, it might already be
outdated.

2.3.5 Maintaining data quality

The cyclic nature of the processes mentioned in a few of the previous sections is an important
aspect of maintaining data quality, since it is a continuous process and not a one-time project.
Data is continuously generated, which means there is constantly new data that needs to be
validated to make sure the quality is good enough. This is especially the case in sensor
networks, where large amounts of data can be gathered at a high frequency. Furthermore,
there can be new uses of the data, or the requirements can be changed. Both affecting the
requirements and process.

Sections 2.3.3 and 2.3.4 describe how to get from a dataset to a set of requirements and
from there how to define metrics for these requirements. The basis for these can be the data
quality dimensions. The steps mentioned can be carried out whenever requirements change,
new issues arise, or new uses are found for the data. Furthermore, it is beneficial to follow
the common or standardized approaches as described in previous sections.

Not only is it beneficial to use a cyclic process for updating requirements and maintaining
data quality, but it is also desirable to implement an automatic process for executing the
rules on data. It is infeasible to do it manually every time new data is generated or to go back

and do it on historic data whenever requirements change. An automatic process becomes
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even more crucial when considering sensor networks and the amount of data which can be
generated.

Maintaining data quality can also be structured by both defining the most important data
quality dimensions and defining critical data. In the use cases used as examples throughout
the guide the most important characteristics of data are completeness and accuracy. In
addition, it is important that the data is traceable (traceability) and not outdated
(timeliness/currency). Choosing the most important characteristics makes it easier to focus
on the most important requirements. The same is the case for defining critical data. If data
can be categorized like this, stricter rules can be put on critical data and more lenient rules
on less important data, making the validation task lighter and avoiding setting strict rules for
all data when only a subset of data has such strict requirements.

2.3.6 Global calibration models for air quality sensor

Low-cost air quality (AQ) sensor networks introduced a promising paradigm shift, going from
traditional monitoring equipment, which has high accuracy but also associated high costs of
initial installation and maintenance, to a much more cost-effective solution of low-cost
compact devices with loT features integrated into a network. This shift can, due to cost-
effectiveness, increase spatial resolution compared to traditional monitoring.

However, for these low-cost devices to reach sufficient accuracy to be deployed as indicative
measurement devices in AQ monitoring networks, the calibration process needs to be
periodically repeated. This frequent calibration has as purpose to mitigate the problem of
sensor drift. Moreover, if the calibration location and deployment location are similar it can
also eliminate the concept drift, which is also known as calibration location-deployment
location mismatch (De Vito et al 2023, Topalovic et al 2019). These additional efforts,
especially needed when accuracy is a concern, can significantly contribute to overall costs,
which hinders and complicates massive deployment.

One possible solution for reducing the cost of calibration is to perform global calibration
models (GCMs). GCMs are used when multiple sensor units, typically originating from the
same fabrication process, need to be calibrated in a batchwise manner. GCMs are often
useful for low-cost sensors with a tendency towards high inter-device variability [24]. In this
approach a calibration model is built with the matrix of responses of multiple sensor units
(i.e., a subset of network nodes) exposed to the same calibration conditions. The resulting
global model is then applied to new uncalibrated replicas after being optimized to maximize
prediction accuracy in new replicas [25]. By transferring the GCM to the complete network,
the complexity of calibration/recalibration campaigns and subsequent related efforts on
network quality assurance are significantly reduced.
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Here recently obtained results by several research groups that examine GCMs when applied
to several different types of sensors used in air quality monitoring are summarized. In
addition to targeting different pollutants, these global calibration approaches also utilize
several different GCMs, such as linear global calibration model for particulate matter (PM)
equivalent mass concentration of PMzs and PMjo (De Vito et al, 2023), GCMs that target
different gaseous pollutants measured by electrochemical sensors (namely limited quadratic
regression calibration models for carbon monoxide (CO), neural network models for nitric
oxide (NO), hybrid models for nitrogen dioxide (NO;) and ozone (Oz) (Malings et al, 2019),
machine learning (ML)-based GCMs for NO, and NO low-cost sensors [26]), by metal oxide
(MOX) gas sensors like the GCMs for temperature-modulated MOX CO gas sensors (Miquel-
Ibarz et al, 2022), parallel machine learning based calibrations for PM.s sensors [26] and
deep learning based calibration for Metal Oxide Semiconductor (MOS) gas sensors. An
example of the latter is found in [28], where gas mixtures including seven target Volatile
Organic Compounds (VOCs: acetic acid, acetone, ethanol, ethyl acetate, formaldehyde,
toluene, and xylene) and two background gases (CO and hydrogen), as well as the relative
humidity, which was analyzed by using MOS gas sensors (SGP40, Seinsirion AG, Switzerland).

Appendix B gives an overview of global calibration approaches as applied by several research
groups (De Vito et al, 2023, Malings et al., 2019, Miquel-lbarz et al., 2022, [26], [28].
Calibration models that were used range from simple linear regression models to deep
neural networks. Majority of the examples are derived from in field collocation campaigns,
while two examples for VOCs [28] and CO (Miquel-lbarz et al., 2022) are derived using data
obtained in laboratory conditions. Model features for simple linear models include low-cost
sensor signals, typically alongside meteorological parameters. Relative humidity (RH) is the
meteorological parameter included in the models for PM, and RH and temperature (T) are
the parameters added to the hybrid models for gaseous pollutants in Table 2 (note that here
linear models are only used for large concentration that are near the ones observed during
training). For more complex models, the feature set often includes all environmental signals
produced by the sensor. Most common performance metrics are the root mean square error
(RMSE), mean absolute error (MAE) and the coefficient of determination R? (between the
calibration model prediction and reference concentration) [27].

2.3.7 Using data quality metrics in the design of a multi-wire thermocouple

In this section we describe an example where data quality metrics are used to inform the
design of a sensor network, here taking the form of a multi-wire thermocouple used to
measure temperature in high value manufacturing applications.

A thermocouple is a device for measuring temperature. A thermocouple comprises two
dissimilar metal wires joined together at one end to form a measurement junction. A voltage

is developed across the wires, which is measured at the open end and is a function of the
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temperature gradient between the two ends. Each wire develops an electromotive force
(emf) in a temperature gradient, which is the thermoelectric effect. For any small length of
wire, this emfis the product of the Seebeck coefficient (defined as the voltage generated per
unit temperature change along the wire, which is characteristic of a given metal) and the
temperature difference from one end of that length of wire to the other.

Thermocouples made of platinum (Pt) and its alloys with rhodium (Pt-Rh) are widely used in
high value manufacturing applications as they offer relatively high thermoelectric stability in
comparison with other thermocouples. The principal cause of instability, and therefore
calibration drift, is the vaporization of platinum and rhodium oxides from the wires, which
causes a local change in composition, and hence a local change in Seebeck coefficient. This
in turn changes the emf generated in a given temperature gradient, which results in a
temperature measurement error because the measured emf is different to the emf that
would have been generated during the original calibration for the same temperature
gradient.

The magnitude of the effect depends on the Pt-Rh composition of the wire. A Pt-30%Rh wire
drifts more slowly than a Pt-6%Rh wire because the same quantity of rhodium lost in a given
time interval is a smaller proportion of the total amount in Pt-30%Rh. A thermocouple
assembly comprising of several wires allows measurements to be made simultaneously by
different thermocouples defined by different pairs of wires. For example, a 5-wire
thermocouple with the widely available compositions Pt-0%Rh, Pt-6%Rh, Pt-10%Rh, Pt-
13%Rh and Pt-30%Rh offers 10 possible pairs of wires and so 10 thermocouples.

Since the different thermocouples have wires in common, e.g., a Pt-6%Rh versus Pt-30%Rh
thermocouple shares a Pt-6%Rh wire with the Pt-6%Rh versus Pt-13%Rh thermocouple, etc.,
there is the possibility to use the resulting correlations between the measurements made by
the thermocouples in the ensemble to provide information about calibration drift.
Additionally, there is the possibility to use the measurements to provide a measurement of
temperature that is ‘better’, e.g., has lower uncertainty, than that provided by any individual
thermocouple. These possibilities, which are the subject of on-going research and
development, are the motivation for the so-called multi-wire thermocouple. The multi-wire
thermocouple is an example of a sensor network in which the individual sensors
(thermocouples) are co-located and are measuring the same measurand (the temperature
at the measurement junction).

Various methods are being studied for using the data recorded by such a multi-wire
thermocouple to estimate the drift of the individual thermocouples and to obtain an estimate
of the (common) temperature measured by the thermocouples and its associated standard
uncertainty. Here, a study is made of the influence on the measurement results obtained
from one of those methods from the choice of the design of the multi-wire thermocouple in
terms of the number of wires and the compositions of the wires. The influence is assessed
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in terms of various data quality metrics, including the difference between the estimate of
temperature and its known value, the uncertainty of the estimate of temperature, an
estimate of the magnitude of the noise in the measured emf data, and the cost of fabricating
and calibrating the multi-wire thermocouple. An optimal design is one that balances the
quality of the information delivered against the cost of obtaining that information.

For illustration, data is recorded by a multi-wire thermocouple comprising of the seven wires
Pt-5%Rh, Pt-8%Rh, Pt-10%RhN, Pt-13%Rh, Pt-20%Rh, Pt-30%Rh, and Pt-40%Rh. The data was
obtained while the thermocouple was immersed in a calibration artefact (a cobalt-carbon
fixed point with a melting temperature of 1324.29 °C), enabling periodic re-calibrations of all
21 thermocouples and hence yielding direct measurements of thermocouple drift in situ [30].
The data comprised measured values of emf for each thermocouple made of two different
wires. Data was recorded over a time period of about 1,520 hours, but the study focused on
the time period between about 200 hours and 650 hours with data at the start of the time
period omitted as in that early period there can be mechanisms other than evaporation that
cause the observed calibration drift.

For each design of the multi-wire thermocouple, the following measurement results are
calculated: the estimates T;,i=1,...,N, of the known temperature T* = 1324.29 °C, the
standard uncertainties u(T;),i = 1, ..., N, of those estimates, and estimates s;,i =1, ..., N, of
the standard deviations of the noise in the measured values of the emf. These results are
then summarized by the following data quality metrics:

N N
1 ) 1,
i=1 i=1

Additionally, the cost of fabricating and calibrating the multi-wire thermocouple is calculated
using the following information (correct at time of writing): wire prices (per metre) are £147
(Pt-0%RhN), £176 (Pt-10%RN), £186 (Pt-13%Rh, estimated), and £243 (Pt-30%Rh). Each wire is
generally two meters long, and the cost increases linearly with rhodium content as rhodium
is more expensive than platinum. A linear interpolating function of wire cost with rhodium
content is considered appropriate to calculate the cost of other wires. The cost of calibrating
a thermocouple is approximately £1000, independent of thermocouple type, and would be
a negligible amount for several thermocouples in a multi-wire assembly.

N
1
M, = ) Mz:ﬁlei_T*l’ My =
i=1

A method for drift estimation is applied to the data corresponding to the complete multi-wire
thermocouple comprising all seven wires and made up of 21 individual two-wire
thermocouples. Additionally, the method is applied to each multi-wire thermocouple formed
by omitting a single wire, which reduces the number of individual two-wire thermocouples
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to 15. Table 2 gives the values of the various data quality metrics for each design of multi-
wire assembly, including the cost of fabrication and calibration.

For the cases when the wire Pt-20%Rh or Pt-40%Rh is removed, the closeness of fit between
the data and the model is better, e.g., as measured by M3 in Table 2 but this might be a sign
of overfitting of the model to the data. Removing these wires, and also the Pt-30%Rh wire,
has an impact on the quality of the temperature estimates as measured by the metrics M,
and M, (Table 2), suggesting that the estimates of the temperature in these cases are poorer
overall. For these cases, the standard uncertainties of the estimates of temperature are also
noticeably different than for the other cases (metric M, in Table 2). The small values for the
standard uncertainties when the wire Pt-20%Rh or Pt-40%Rh is removed is likely linked to
the smaller estimates of the standard deviations of the noise.

For these reasons, it is concluded that it is important to include the wires Pt-20%Rh, Pt-
30%Rh and Pt-40%Rh (which coincidentally are least affected by calibration drift) whereas
removing one of the other wires has little impact on the results. In terms of cost, the resulting
multi-wire thermocouple assemblies are more expensive to fabricate and calibrate. The
results suggest that an ‘optimal’ choice for removing a single wire is to remove the wire Pt-
13%RnN.

Table 2 Values of data quality metrics for different designs of multi-wire thermocouple, including
a design with all the wires and designs with an individual wire removed.

Wire removed M, /°C M, /°C M3 /pV M,/°C Cost/f
None 0.018 0.078 5.223 0.314 3,839
Pt-5%Rh 0.024 0.090 5.941 0.458 3,521
Pt-8%Rh 0.018 0.077 5.931 0.389 3,501
Pt-10%Rh 0.019 0.078 5.978 0.389 3,487
Pt-13%Rh 0.023 0.081 5916 0.393 3,467
Pt-20%RhN 0.030 0.090 2.850 0.187 3,420
Pt-30%RhN 0.063 0.129 5.976 0.594 3,353
Pt-40%Rh 0.099 0.207 1.045 0.122 3,286
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3 Metrological Traceability

3.1 Methods and Guidelines for In-Situ Self-Calibration or Co-
Calibration with Reference Sensors in a Sensor Network

Establishing the traceability of measurements to the international system of units (Sl) in
sensor networks (SN) is essential from a metrological standpoint [26]. One of the key aspects
in this regard are traceable calibration operations, which ensure the link from a
measurement to its appropriate SI unit via an unbroken chain of calibrations [27].
Conventional calibrations, which are carried out in specialized laboratories, involve the
comparison of the values delivered by the device under test with the measurement values
provided by a reference standard. A reference standard can be another device or physical
artefact with known properties or quantities derived using fundamental physical constants.
In the case of a sensor, another reference sensor with known uncertainty can be used as a
reference sensor. Such a calibration is typically very expensive and not cost-effective,
particularly for low-cost sensors. The deployment of sensor networks in hard-to-reach
locations and carefully controlled environments further reduces the feasibility of regular
laboratory calibrations.

In-situ calibration is @ common work-around in such cases. In this context, in-situ refers to
the characterization of the measurement model of the sensor and its uncertainty, i.e., its
calibration being performed at the location of its deployment without having to disassemble
and transport it to a calibration laboratory or factory [28]. For this purpose, a transportable
device with known accuracy can be used. A co-calibration, on the other hand, can be
considered as a special case of an in-situ calibration where nearby sensors already present
in the network are used as reference devices [29]. In the case of co-calibration, the reference
value itself may have to be estimated at the position of the device under test using
appropriate interpolation and sensor fusion techniques.

The report provides an overview of currently available methods to (self-/co-)calibrate sensors
within a sensor network and assesses the suitability for metrological use-cases. The insights
from the literature review are joined with the discussions made with the project use-cases to
provide guidelines and practical considerations within real-world SN.

3.1.1 State of the Art

An excellent review on in-situ based co-calibration in sensor networks is provided by Delaine
et al. [28]. Macro-calibration and blind-calibration are two concepts that are closely related
to in-situ and co-calibration. Macro-calibration refers to the calibration of an entire sensor
network based on its total response without having to calibrate each individual sensor node
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[30]. Blind-calibrations [31] refer to the steps taken to achieve homogeneous behaviour of
all sensor nodes by possibly enforcing the dominant influence of sensors that are a priori
known to provide sufficiently good (calibrated) measurements. This is typically done in cases
where there are no reference signals/sensors, or other sources of ground-truth information
about the measured process. A consolidated review of algorithms relevant to blind- and
macro-calibrations as well as a consensus-based extension to the distributed case can be
found in [32]. An extension of the algorithm with uncertainty evaluation as well as a treatment
of traceable co-calibration was provided in [33].

3.1.2 Guidelines and Considerations in Real-World Sensor Networks

Based on discussions within the project consortium and information from the literature
review, guidelines and practical considerations for the application of co-calibration methods
in real-world sensor networks are provided. In addition to some general remarks, these
guidelines cover generic scenarios of prototypical sensor network configurations. The
scenarios were chosen based on their relevance to the use cases within the project. Each
scenario is described, relevant co-calibration methods are presented, and their applicability
discussed. Concerning the co-calibration methods, the approach, strengths, weaknesses,
and complexity of the transfer behaviour are described.

3.1.2.1 General Remarks

Itis encouraged that the data from the sensor network is available/retrievable in a structured
and processing-friendly way, e.g., REST, JSON, HDF5, and SQL. If traceability of reference
sensors is of importance, this data also needs to include information about the measurement
uncertainty. Moreover, it is important to provide a way to align and relate datapoints,
meaning that, i.e.,, measurement data in sensor networks are timeseries of datapoints and
the timestamps are based on the same timescale across the network. Ideally, metadata (e.g.,
sensor identifier, location, unit, calibration status, etc.) is available alongside the (numerical)
measurement data to simplify the selection of reference sensors and facilitate automation
at a later stage.

3.1.2.2 Detecting Sensors to be Calibrated

As with physical sensors, the intervals at which a co-calibration needs to be performed also
needs to be determined. Such intervals depend on the quality of sensors involved, the
application for which they are used, and the accuracy required. The interval can be fixed
based on a particular standard or it can be flexible, relying on an online monitoring of the
constituent sensors [34].

Sensor transfer behaviour: The transfer behaviour of a sensor refers to the relationship
between the physical quantity being measured and the value provided by a given sensor. The
relationship can usually be expressed by means of a parametric expression. The most
common choice is a linear affine model, i.e., the output y and input x, are linked by y = a *
x + b with potentially multivariate gain a and offset b. More complex transfer behaviour is
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rarely encountered. Another general observation is the lack of uncertainty evaluation /
sensitivity analysis and with that missing traceability of the estimated transfer behaviour. An
understanding of the transfer behaviour of a sensor is indispensable when measuring time-
varying quantities requiring the estimation of dynamic measurement uncertainties.

3.1.2.3 Scenario A: Dense Sensor Network with Stationary Sensors

A sensor network can be called “dense” if the specific quantity of interest does not change
much between (spatially) neighbouring sensors. This can be leveraged to obtain reference
values from the network. [35]The review paper by Delaine [28] contains a list of co-calibration
methods are designed for such networks. For example, Stankovic et al. [32], [36], [37]
proposed a consensus-based calibration algorithm for a set of co-located sensors.
Computation complexity in this case is rather low due to a gradient-decent optimization
approach. It estimates the gain and offset of a linear affine transfer behaviour. Weight factors
can be used to include only traceable reference values into the calculations. Uncertainty
evaluation is not covered in the original papers but is straightforward and was added in [33],
but calibration performance on transient signals could be limited.

Kizel et al. [38] proposes a node-to-node calibration approach, assuming pairwise co-
location. The in situ calibrated sensor therefore form a chain of calibration dependencies. In
each link of this chain the gain and offset are estimated using least square regression
methods. Sensitivity analysis of the estimated parameters is provided, although this is not an
uncertainty propagation in the strict sense. Moreover, the influence of the chain length onto
the “uncertainty” is investigated.

Gruber [33] assumes the availability of a virtual reference for the sensor to be calibrated. In
a simple case, this would come from an appropriately robust mean of co-located sensors.
Uncertainty of the virtual reference is directly included in the parameter estimation process
by following a Bayesian approach, which also leads to probabilistic distributions of the sought
parameters of a linear affine model with an error term. The method provides traceable
results according to the definition in the VIM.

3.1.2.4 Scenario B: Sparse Sensor Network with Stationary Sensors

Within a sparse sensor network, the specific quantity of interest can change considerably
between neighbouring sensors. It is therefore necessary to fill potential information gap with
model-based approaches. Examples of such sensor networks can be found in energy
networks [39] and chemical production plants [40]and smart buildings [41]. A generic
approach to handle such sensor networks is to make use of the methods listed in scenario
A. This is done by first applying an interpolation model that quantifies the available knowledge
about the spatial, temporal, scientific or technical relations, e.g, a Gaussian process
interpolation that also takes correlations in the values into account [42]. Another common
approach involves performing a spatio-temporal k-nearest-neighbour gradient-model
interpolation [29].
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Moltchanov et al. [43] and Tsujita et al. [44] propose simple but effective heuristics to find
subsets of urban environmental pollution monitoring data that allows to be used for in situ
calibration. While Moltchanov assumes that nightly measurement values are almost equal
due to a lack of anthropogenic influence, Tsujita concludes from almost equal measurements
of reference stations across the city that the overall distribution is uniform. The selected data
is then used to estimate the transfer behaviour using least-squares techniques. No
uncertainty evaluation was given but could be added according to [45] or Monte Carlo
approaches. Lin [46] proposes to regularly bring a reference sensor in the vicinity of the
sensor for a specified time duration to be in-situ calibrated (opposed to a classic calibration,
which brings the sensor to the (laboratory) reference).

Further interesting ideas are found across the literature. For gas sensors, Sun et al. [47]
develops a sensor that periodically can be inserted into / surrounded by a known gas mixture,
providing known and traceable reference measurements. Bychkovskiy et al. [48] does not
directly compare time-series or datapoints, but the histograms of periods in time that are
highly correlated between two sensors. Martin et al. [49] allows for additional model terms
(e.g., dependency on temperature or humidity) and only includes them, if they increase the
transfer model performance.

3.1.2.5 Sparse Sensor Network with Mobile Sensors and Stationary Reference Sensors
Another prototypical situation is the use of mobile sensors (e.g., mounted on a vehicle). The
sensor density of such networks is typically sparse but offers the possibility of a sensor
“rendezvous” - a limited subset of datapoints that fulfils the properties of a dense sensor
placement. Based on the review paper by Delaine [28], the following co-calibration methods
are designed for such networks. The mobility is usually leveraged by search for temporary
co-location or “rendezvous” of sensors in the data.

Miluzzo et al. [50] propose that uncalibrated nodes/sensors can ask for nearby reference
readings. These readings are then distance weighted to obtain a virtual reference reading to
estimate the offset (but no gain). Although no uncertainty evaluation is carried out, doing so
is likely to be straightforward using the GUM LPU (law of propagation of uncertainty).

The approach chosen by Hasenfratz et al. [51] and Saukh et al. [52], [53] is rendezvous based.
Rendevouz in the context of mobile sensor nodes refers to a situation in which two or more
sensors are in the temporal and spatial vicinity of each other, i.e., in a given spatial location
at the same time. In contrast to [50], the datapoints selected for the in-situ calibration are
age weighted, reducing the influence of older rendezvous. The parameter estimation is
carried out using least square regression. Although a RMSE-value with regard to the
(simulated) ground truth is provided, no uncertainty evaluation is documented. A very similar
approach is proposed by Maag et al. [54].

3.1.3 Applicability To Real-World Use-Case of Air-quality Monitoring Networks
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Sensor networks used for air-quality monitoring consist of many low-cost sensors with a
significant number of mobile nodes and are an ideal use-case for the application of methods
for re-calibration, self- and co-calibration developed as part of earlier tasks. Low-cost gas
sensor systems can potentially increase spatial and temporal resolution in air quality
monitoring networks in smart cities, but suffer from cross-sensitivities, interference with
environmental factors, and ageing. These problems are compounded as these sensors
usually operate under non-static conditions. The main requirement of this task is the
availability of methods for uncertainty-aware sensor fusion, drift detection, dynamic
uncertainty estimation, and optimized traceability paths. Given the large-scale use of low-
cost sensors, e.g., 600 sensors distributed around the Parisian region [55], co-calibration has
the potential to play a significant role in this use case. Moreover, a large majority of the
sensors (500) in the aforementioned network are placed on postal service vehicles and don't
have a fixed location as a consequence. The co-calibration methods developed will have to
take this fact into account by potentially adapting the methods outlined in the preceding
section.

3.1.4 Summary

The need and current state of in-situ calibration in sensor networks are described. To
formulate guidelines and practical considerations for the application of such methods in real
sensor networks, three prototypical sensor network scenarios are proposed. For each
scenario, multiple promising and existing co-calibration methods are presented. The
advantages of these methods regarding metrologically sound results are briefly discussed
for each method, revealing a lack of uncertainty evaluation in many methods. Moreover,
general remarks are provided that enhance the data quality of suitable datasets and prepare
the automation of in-situ calibration methods. Finally, the applicability in rea-world use cases
were discussed for three generic scenarios corresponding to common sensor network
configurations: dense networks with stationary sensors, sparse networks with stationary
sensors and sparse networks with mobile sensors and stationary reference nodes. The latter
of the three aforementioned scenarios was further discussed for the specific case of air-
quality monitoring networks. It was shown that the methods for co-calibration and in situ
calibration must take the mobility of individual sensor nodes into account. The use of low-
cost sensors in such networks further increases the need to develop methods for
uncertainty-aware sensor fusion, drift detection, dynamic uncertainty estimation, and
optimized traceability paths.
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3.2 Methods for Uncertainty-Aware Sensor Fusion in Dynamic
Measurements

A dynamic measurement can be defined as one where the physical quantity being measured
(the measurand) varies with time and where this variation may have a significant effect on
the measurement result (the estimate of the measurand) and the associated uncertainty
[56], [57]. Typically, sensors used in industrial measurements have been calibrated under
static conditions. In practice, however, the measurements are usually performed under
dynamic conditions, i.e., the measured signal is non-stationary or transient. The use of a
sensor in a different mode from that in which it was calibrated can significantly affect the
reliability and uncertainty of the measurement result.

A measurement system necessarily has a finite response-time to a change in the physical
quantity that is being measured, i.e. the measurand. In case the system - in our case a sensor
- responds much faster than the rate at which the measurand changes, it is possible to
directly analyze the measurement and compute the uncertainty by the conventional static
means as defined by the guide to the expression of uncertainty in measurement (GUM) [58].
On the other hand, if the measurement system responds slowly to the rate of change of the
measurand, the uncertainty determined using conventional static means is no longer
accurate. In such cases the measurement uncertainty itself may be time-dependent [59].

3.2.1 Sensor Fusion

Sensor fusion can be defined as “the combining of sensor data or data derived from sensor
data such that the resulting information is in some sense better than would be possible when
these sources were used individually” [60]. In the context of sensor networks, information
obtained from multiple sensors, often measuring different physical quantities, can be
combined based on a mathematical model to generate values that cannot be directly
measured. For instance, a common application of sensor fusion is to capture industrial
processes in the form of a digital twin, i.e. virtual representations of sensors and sensor
networks in the fields of discrete manufacturing and process engineering [61], [62]. In
addition to measuring quantities that aren't measurable by conventional means, combining
information from multiple sensors can [63]

e Increase the quality of data,
e Increase reliability and,
e Increase the coverage area of a measured quantity.

From the point of view of metrology, ensuring the traceability of the resulting “fused” or
derived measurements by appropriately propagating the uncertainties is of utmost
importance. In this report, a brief review of methods and literature relevant to sensor fusion
will be explored with an emphasis on he added challenge posed by dynamic measurements
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and calibration. The results are informed by a survey conducted among the use case owners
to address specific issues pertaining to the use of sensor fusion in their respective areas of
expertise.

3.2.2 State of the art

3.2.2.1 Sensor Fusion

Over the years, a substantial amount of research in sensor fusion has focused primarily on
the methods and their applications in diverse areas [64], [65], [66]. In comparison, literature
on the incorporation of metrological principles in sensor fusion is limited. This problem is
compounded when seeking sources relevant to sensor networks. An exception to this rule is
the method to compensate for outliers while reducing the effect of sensor failure and drift in
the case of homogeneous sensor fusion, which was presented in [61]. A general review of
sensor fusion (referred to here as multisensory fusion) and consensus filtering was
presented in [67]. Consensus filtering refers to a distributed algorithm that allows the nodes
of a sensor network to track the average of all their measurements [68] in such a way that
the information exchange only happens between neighbouring nodes. Consensus filtering is
in fact a dynamic version of the average consensus algorithm which allows a network of
agents (in our case, sensors) to agree on the average of a set of initial values [69].

Perhaps the most widely used method in sensor fusion is the Kalman filter and its extensions
and derivatives [70]. The Kalman filter is used to produce estimates of unknown quantities
over time using measurements from multiple sources along with statistical noise. The
estimate thus produced is better than one obtained from a single measurement. The Kalman
filter recursively updates the value of an unknown quantity under observation by combining
the predicted value based on its previous state and a physical model describing its dynamic
evolution along with measurements provided by sensors. The Kalman filter is an established
method in sensor fusion and has given rise to variations such as the extended and unscented
[71] Kalman filters in order to model nonlinear systems.

3.2.2.2 Dynamic Measurements

A measurement is considered to be a dynamic measurement when the value of the quantity
of interest varies over time [56]. While the guide to the expression of uncertainty in
measurement GUM/GUM-S1 [72], [58] provides methods for measurements that are
constant in time, a dearth of similar techniques was identified for dynamic measurements,
particularly in the context of traceability [57]. Traceability is typically established via a
calibration of the measurement device or sensor and, in the dynamic case, must be
performed under appropriate conditions. The resulting methods must also be consistent
with the static case. As measurement systems for dynamic measurements in metrology can

often be assumed to be linear and time-invariant (LTl), a sizable body of research is focused
This project is supported by: Page 34

%
EURAMET



on developing methods for such models [73], [74], [75]. Typically, the sensor output is
represented by a digital finite or infinite impulse response (FIR/IIR) filter such that the sensor
output y[n] at a discrete time point n is related to the physical stimulus x[n] by
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Equivalently, the sensor behaviour can be represented by the transfer function H(z) in the
frequency domain as
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Performing a dynamic calibration would require the coefficients a;, b,, as well as their
respective uncertainties to be determined [76]. A brief outline of the basic principles of
dynamic measurement analysis that combines inputs from different fields such as
measurement science, statistics, mathematics and signal processing can be found in [77] and
[78]. Methods for the analysis of dynamic measurements and dynamic calibration have
already been implemented in several use cases. For instance, a method to incorporate
dynamic uncertainty in real-time systems and compensate for jitter prior to sensor fusion
was explored in [79]. Other areas where dynamic calibration has been explored are
waveform metrology [80], the calibration of hydrophones used as medical ultrasonic
instruments [81] and in the case of high-g shock-accelerometers [82].

3.2.3 Use case specific considerations

3.2.3.1 District heating

Sensor fusion is especially important to the case of district heating as typical networks are
sparsely populated, i.e. physical sensors are located at only a few points. In order to optimize
the network, it is important to deduce parameters at several other locations using sensor
fusion. Kalman filtering is the most used method and accounts for the uncertainty of the
estimated value, when set up correctly. An example of a sensor fusion application is the
spatial interpolation to determine values of a quantity at points without a physical sensor.

3.2.3.2 Industrial Manufacturing

The main application of sensor fusion for the heat treatment of high-value components in
advanced manufacturing is to detect and quantify calibration drift in sensors, specifically
thermocouples comprising wires made of platinum (Pt) and its alloys with rhodium (Pt-Rh).
The uncertainty of the estimates of the calibration drift for the individual sensors is an
important metric for quantifying the reliability of the sensor network, which is in the form of
a multi-wire thermocouple, as well as the drift detection algorithm. Currently, sensor fusion
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techniques for this use-case are under development with the aim to treat data fusion for
sensors with different systematic drift characteristics as well as the handling of correlations
and uncertainty in recorded sensor data. The fused values here do not correspond to
interpolated measurements, but to an estimate of the common temperature measured the
sensors. Some of the methods for sensor fusion under consideration are ‘data-driven’, in the
sense that they make very few assumptions about the sensor network that generates the
data, and they make no use of knowledge about the physical mechanism that leads to
calibration drift. Other methods use, to varying degrees, knowledge about the sensor
network and those mechanisms. Furthermore, consideration is given to how those methods
can be made ‘uncertainty-aware’, i.e, to account for the (measurement) uncertainties
associated with the different sources of information used by the methods, including
measured data obtained from observation and data obtained from physics-based models.
Those uncertainties are then used as the basis for evaluating the uncertainties for the
estimates of the quantities inferred or predicted by the methods.

Smart buildings: Sensor fusion techniques are also very important in smart building
applications. There is a distinct need for guidelines for the validation of models and
algorithms as well as for the development of standards and benchmarks. As in the case of
industrial manufacturing, the use of Kalman filters is prominent. In addition, Bayesian
networks are employed frequently [83].

Environmental monitoring: The role of sensor fusion in environmental/air-quality monitoring
needs to be studied further. The main issue is here is to assess whether model-based sensor
data assimilation can be considered as a form of sensor fusion. Data assimilation in this
context involves estimating the error of a model through the interpolation of sparsely
observed errors. In other words, one could say that interpolation tasks are a form of sensor
fusion with model outputs. In this case, methods developed for uncertainty propagation and
traceability would find direct application.

3.2.4 Summary

Sensor fusion techniques are known to be integral to several domains with sensor network
use cases. The applications range from interpolation in the form of deducing parameters at
different locations to the use of sensor fusion for drift detection. In order for the developed
methods to be applied in a trustworthy manner, ensuring the uncertainty awareness and
hence the traceability of the methods is of utmost importance. As such methods will almost
certainly involve the use of time-varying quantities, the uncertainty awareness must also
account for the dynamic nature of the system. A brief literature review along with basic
concepts relevant to sensor fusion and dynamic calibration in sensor networks was
presented. A special emphasis was placed on consensus filtering and Kalman filters as
commonly used data fusion methods. A brief overview of the basic concepts of dynamic
calibration and the estimation of the transfer behavior of a sensor were also presented.

Finally, a discussion of a set of real-world use cases and their individual requirements with
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respect to sensor fusion and dynamic calibration were also provided. The potential
application of sensor fusion to sensor network use cases is varied. The combination of data-
driven and physics-based models for drift detection was found to be a particularly important
subject. In the context of metrology, the propagation of uncertainty to the fused value is of
utmost importance.

3.3 Digital Twins and Digital Shadows as Potential Modelling
Techniques for Case Studies

This section summarizes different modelling techniques and relevant literature on digital
twins and digital shadows. Definitions of digital twins and digital shadows will be given and
afterwards the sections will focus on the different project use case and any potential
modelling techniques within that.

3.3.1 General definitions

Adigital twin is a technology that is more than just the digital representation of the real object;
it also enables bi-directional data exchange and real-time management [84]. Therefore, a
digital twin differs from models like Building Information Modeling (BIM) models. A Digital
Shadow is similar to a digital twin but not as advanced, as it only allows a one-way transfer of
data [84].

Digital Shadow Digital Twin o Connectivity, bi-
directional across the
------------------------------------- : object lifecycle
a . Near real-time
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physical space
Uses sensor updates
and fleet history
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smallheterogeneous

tower crane tower crane
loT systems

Figure 1: Comparison between digital twin and digital shadow. [84]

In recent years, digital twins have gained increasing attention due to their versatile
applications. Digital twins provide benefits throughout the entire lifecycle of a product [85].

Therefore, digital twins are currently used in important industries, including environmental
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protection, urban management, oil and gas, aerospace, electricity, automotive, healthcare,
rail transport, manufacturing, construction, and shipping [86]. In the buildings sector, digital
twins are mainly used for four different topics: to optimize the design of a building, to
increase the comfort of occupants, to evaluate and increase the building performance, and
finally, to simulate and forecast future situations. [87]

The digital representation of a specific object enables optimized decision-making, which can
be analyzed in digital space [85]. However, a digital twin not only consists of a model of the
real object but also includes a data link between the real and digital object [87]. Therefore,
three main elements are required for a digital twin: the real-world entity, a digital
representation of the real-world entity, and a linking mechanism that allows an automatic bi-
directional data transfer between the two entities. [87]

3.3.2 Potential modelling techniques from literature

In the following, potential modelling techniques, e.g., digital shadow and digital twin and
relevant existing bibliography, are described for a few of the use cases used in this guide.

3.3.2.1 Use-Case “Environmental monitoring”

The concept of digital twins is relatively new and involves substantial funding to develop real-
time models for environmental applications. Research has predominantly focused on
exploring their potential in environmental modeling, yet there are some promising examples
where digital twins have proven effective in environmental monitoring.

[88] described the development of a digital twin focused on advanced modeling of soil
moisture, river discharge, evaporation, and precipitation. This digital twin collects and
disseminates current data from the Mediterranean Basin, encompassing countries like Spain,
France, Italy, Greece, Turkey, and others. It serves purposes such as predicting landslides,
managing irrigation water resources, and forecasting forest fires. However, the study
underscores several challenges, including the need for high-resolution monitoring (1 km, 1
hour) and sophisticated artificial intelligence (Al) to grasp human impacts on hydrological
processes, alongside uncertainties in data accuracy.

[89] proposed a similar framework for visualizing environmental sensor data within the
context of digital twins, applying it to create a digital twin of Poyang Lake in China. They
employed scalar and vector visualization methods to present collected environmental data
and utilized video fusion technology for real-time display of environmental surveillance
videos. Their study underscored the framework's practical benefits in enhancing the
efficiency of Poyang Lake's environmental monitoring, suggesting its adaptability to other lake
environments.
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[90] explored the creation of a digital twin for air quality monitoring networks in smart cities,
relying on mathematical models grounded in differential equations. They highlighted the
application of these models for simulating pollutants like carbon monoxide (CO), ozone (Os),
nitrogen oxide (NO), and nitrogen dioxide (NO2) across spatial and temporal dimensions,
contingent upon initial data for predictive purposes. The digital twin operates through
continuous data exchange between physical sensors and the digital model, facilitating real-
time updates. Expected advantages include predictive maintenance, risk assessment, and
operational improvements, though challenges such as sensor data quality and
computational limitations are acknowledged.

[91] presented a case study on developing a digital twin for Jakarta, Indonesia, integrating
Digital Twin and Mixed Reality technologies to advance Smart City initiatives. This integration
enables planners and decision-makers to visualize and implement solutions for optimizing
transport routes, implementing greener energy policies in highly polluted areas, and
expanding urban green spaces effectively. Their approach leveraged existing datasets such
as meteorological records, air quality metrics, and traffic data to build the digital twin
infrastructure.

[92] investigated the evolution of digital twins in urban air quality management, emphasizing
real-time sensor data integration and predictive modeling. Their research enables cities to
simulate air pollution scenarios based on factors like traffic patterns and weather conditions,
supporting informed decision-making to mitigate pollution hotspots and enhance public
health. For instance, digital twins predict pollutant levels in specific urban zones, guiding
policies aimed at reducing emissions and improving air quality standards.

3.3.2.2 Use-case “Smart buildings”

The building sector accounts for nearly one-third of the global final energy consumption [93].
Thus, increasing the operational energy efficiency of buildings is critical to achieving carbon
neutrality. Digitalization of buildings can reduce energy consumption by approximately 10 %
using real-time data to improve the operational efficiency of buildings, according to the
International Energy Agency [94]. Thus, many concepts, such as cyber-physical systems and
digital twins, have been proposed [95]. A digital twin differs significantly from a static 3D
model derived from building information modeling (BIM) [96].

However, BIM models are currently widely utilized as a basis for the derivation of digital twins
[87]. Furthermore, building energy model (BEM) models are derived and combined with GIS
datasets in cases of performance simulations for multiple buildings up to the urban level
[87]. Furthermore, Internet of Things (loT) devices such as temperature, humidity, and
sensors are widely utilized in literature [87] [97] [98] [99]. The integration of an loT
infrastructure enables a digital twin to process and visualize measurement data [87].
Therefore, 10T is utilized in combination with machine learning to derive a digital twin in the
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building sector [6,7,8]. In conclusion, in the context of building energy efficiency and control,
a BIM model is utilized as a starting point for a digital twin, and cloud computing and Internet-
of-things (IoT) technologies are integrated into the digital twin platform [87].

The derivation of a digital twin for buildings remains challenging due to the inherent
characteristics of buildings, such as the design differences, the large building sizes, and their
long operational period [95]. Yoon [95] divides the process of deriving a digital twin into 3
phases. First, in the design stage, BIM information is utilized in combination with prebuild
models and physics-based white box modeling to derive surrogate models based on data-
driven methods. These models are calibrated in a later step during their life cycle. Second,
intrusive data is collected during commissioning to verify or update the white-box, surrogate,
or prebuild models from the design phase. During the third phase, the operation phase, data
is obtained non-intrusively from physical sensors. Prebuild models are continuously applied
and calibrated with correlational techniques. Thus, the gap between the real building and its
digital twin can be reduced so that the real building can be operated optimally [95].

Furthermore, energy-related occupant behavior has a large impact on the predicted and
observed energy consumption phase [100]. Thus, there is a need for an intelligent, optimized,
and personalized control of the indoor environment that acknowledges the occupant's
preferences [101]. Therefore, an intelligent energy management system should
communicate with the occupants and have up-to-date information [101]. Furthermore,
external conditions such as irradiance and outdoor temperature can play a key role in
energy-related decisions and should be processed to make decisions for intelligent energy
and comfort management [101].

In [101] divides energy management strategies into three non-mutually exclusive categories:
conventional control strategies, intelligent control, and multi-agent-based modeling. Classical
controllers encompass P, PI, and PID controllers that are closed-loop controllers. However,
these controllers are non-optimal and lead to energy consumption waste [101]. Thus,
adaptive controllers were designed, integrating fuzzy logic controllers into the control loop.
Similarly, least-square estimations were introduced as an alternative to fuzzy controllers to
keep the performance stable when facing uncertainties [101]. However, these controllers
depend on the building model, do not have the flexibility to deal with varying occupant
comfort, and have limited learning capabilities [101].

Intelligent controllers encompass many different approaches to derive control strategies,
such as computational intelligence (Cl), including fuzzy logic, artificial neural networks, genetic
algorithms, or model-based model predictive control (MPC) [101]. The main features of Cl
are the learning capability, the interaction with the occupant to receive feedback, their
adaptability to the environment, and the ability to operate under uncertainty [101]. MPC is
a control strategy that can handle uncertainty in parameters, occupancy, comfort conditions,
and weather predictions using dynamic models [101]. Previous outputs of the system are
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utilized to predict future control signals and optimize them according to an objective [101].
Finally, muti-agent-based modeling techniques are characterized by multiple agents that
have the ability to act autonomously. Each agent can cooperate with other agents while
fulfilling their specific goal. In intelligent energy system management, a central agent is
generally responsible for supervisory control. [101]

In the following, the simulation-based, agent-based and machine learning modelling
techniques are summarized.

White-Box / Simulation-Based Modelling

White box modeling, also known as physical or deductive modeling, involves creating a
detailed representation of the building's physical characteristics and systems. This method
relies on first principles and explicit knowledge of the building's structure, materials, and
dynamics. Key features of white box modeling include its transparency, as all aspects of the
model are known and can be examined in detail. White box models are highly detail-oriented,
including comprehensive information about the building's geometry, thermal properties of
materials, HVAC systems, and occupancy patterns. However, this approach requires
extensive and accurate data about the building's physical characteristics and operational
parameters. The high level of detail ensures high accuracy in simulating building
performance, making this method especially suitable for new buildings or those with well-
documented characteristics.

Simulation models are closely related to white box modeling in the context of building
performance analysis and design. Simulation models are widely used in building automation
to create virtual replicas of building systems. These models allow for the testing and analysis
of different scenarios without physical implementation. Simulation-based modelling is
applied in performance evaluation of building automation system (BAS), scenario analysis,
and system design and optimization. The advantages of this technique include providing a
risk-free testing environment and the ability to model complex systems. On the downside, it
has high computational requirements, and the model's accuracy depends on the quality of
the input data.

Modeling the whole building to simulate the overall building performance is commonly done
using simulation tools such as EnergyPlus (developed by the U.S. Department of Energy),
TRNSYS, DeST, or Modelica [102]. At Forschungszentrum Julich, Energy Systems Engineering
(ICE-1), the focus is currently on the usage of Modelica models, making use of the open
source Modelica model library AixLib.

However, the performance of the derived models depends on the input parameters.
Inaccurate or incomplete data can lead to erroneous predictions and suboptimal decisions.
Therefore, it is crucial to ensure that the models are calibrated with accurate data from the
actual building systems. Thus, calibration of the parameters is needed to fit the simulation
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model to the actual physical system [102]. Additionally, simulation models can be
computationally intensive, requiring significant processing power and time, especially for
large and complex buildings.

Furthermore, the current physics-based simulation models utilized for digital twins often
ignore the object's specific geometric shape and volume [102]. Such dynamics could be
integrated by using CFD simulation models. Finally, artificial intelligence can be combined
with digital twins to describe the relations between physical parameters and energy
consumption more accurately. Thus, the energy efficiency can be improved [102].

According to Pan et al. [102], simulations in digital twins are most commonly applied in the
construction and operational phases. In the construction phase, simulations are utilized for
monitoring, workers' safety management, and compliance checks of materials [102]. During
the operation, a digital twin is utilized to improve the energy efficiency of the building, as well
as to monitor thermal management and monitoring [102]. However, according to Pan et al.
[102], digital twins are not yet fully used on a large scale.

In addition to traditional simulation tools, there has been a growing interest in using co-
simulation approaches to enhance the accuracy and flexibility of building models. Co-
simulation involves coupling multiple simulation tools to model different aspects of a building
system simultaneously. This approach allows for more detailed and integrated analyses,
capturing the interactions between different subsystems more accurately.

Wetter [103] studied the use of the Building Controls Virtual Test Bed (BCVTB), a co-
simulation platform that integrates EnergyPlus with other simulation tools such as MATLAB
and Simulink. This integration enables the detailed simulation of building energy systems and
control strategies, providing a more comprehensive understanding of system performance
and potential optimization opportunities.

Agent-based models

Agent-based models (ABM) use autonomous agents to represent individual components
within a building system. Each agent follows a set of rules and interacts with other agents,
leading to emergent system behavior.

ABM is used for decentralized control systems, occupant behavior modelling, and energy
management. Its main advantages are flexibility in modelling diverse behaviors and suitability
for complex adaptive systems. However, it requires detailed definition of agent rules and can
be computationally expensive.

Wang et al. [104] utilized ABM for modeling occupant behavior and its impact on energy
consumption, providing insights into how different usage patterns affect overall building
performance. D'Oca and Hong [105] explored the application of ABM in simulating occupant
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interactions with building systems, demonstrating how these interactions can be optimized
to enhance energy efficiency and occupant comfort.

Black box Modelling / Machine Learning Models

In building automation, black box modelling refers to a modelling approach where the
internal workings or mechanisms of the system are not explicitly understood or modeled.
Instead, the emphasis is on capturing the input-output relationship of the system using
empirical data or observations. Black box models are typically used when the underlying
processes are complex or not fully understood, and the focus is on predicting outputs based
on inputs without delving into the detailed mechanisms.

Machine learning (ML) techniques often function as black box models in building applications.
They are nowadays increasingly applied in building automation to analyze large datasets and
identify patterns for system optimization and predictive maintenance. Machine learning (ML)
techniques are transforming building automation by enabling systems to analyze large
datasets, identify patterns, and optimize operations. These models are being applied in fault
detection and diagnosis, predictive maintenance, and energy consumption forecasting.

ML models are particularly effective for fault detection, diagnosis and control purposes in
BAS. They can process vast amounts of sensor data to identify anomalies that indicate
equipment malfunctions or inefficiencies. For instance, supervised learning algorithms such
as decision trees and support vector machines (SVMs) can be trained to recognize fault
patterns using historical data. Once trained, these models can quickly detect faults in real-
time, reducing downtime and maintenance costs.

Predictive maintenance is another critical application of ML in building automation.
Traditional maintenance schedules are based on fixed intervals, which can be inefficient. ML
models can predict when maintenance is actually needed by analyzing trends in sensor data.
Techniques such as regression analysis and neural networks are used to predict the
remaining useful life of equipment. This predictive approach minimizes unnecessary
maintenance, extends the lifespan of equipment, and reduces costs.

Energy consumption forecasting is essential for optimizing energy use in buildings. ML
models, particularly time series forecasting techniques like ARIMA and LSTM networks, can
predict future energy consumption based on past usage patterns, weather data, and
occupancy information. Accurate energy forecasts enable more effective demand response
strategies and energy purchasing decisions, ultimately leading to cost savings and reduced
environmental impact.

The primary advantages of ML models include their ability to handle large datasets, adapt to
new data, and identify complex, non-linear relationships between variables. However, they
require extensive training data and computational resources. The interpretability of ML
models can also be challenging, particularly with complex models like deep neural networks.
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In [106], a review of the use of machine learning for energy prediction in smart buildings,
highlighting how different ML algorithms can accurately forecast energy consumption based
on historical data is presented. They found that ML models outperformed traditional
statistical methods in terms of accuracy and adaptability. In [107], the application of deep
learning techniques for fault detection in HVAC systems, showing how these models can
identify anomalies and predict potential failures, thereby reducing maintenance costs and
improving system reliability is demonstrated.

Another significant development in ML for building automation is the use of reinforcement
learning (RL). RL algorithms can learn optimal control strategies through trial and error,
making them suitable for complex systems where predefined control strategies are
impractical. In [108], RL to optimize HVAC control, resulting in significant energy savings while
maintaining occupant comfort is applied. RL models are particularly valuable in dynamic
environments where system behavior changes over time.

Hybrid Models

Hybrid models combine multiple modelling techniques to leverage their strengths and
mitigate their weaknesses. These models are particularly useful in capturing the complex
interactions within building systems.

Hybrid modelling approaches are applied in integrated building energy management,
enhancing system reliability, and providing comprehensive system analysis. The primary
advantages include improved accuracy and greater modelling flexibility. However, these
models come with increased complexity and require expertise in multiple modelling
technigues. In [109], mathematical and simulation models for HVAC control, demonstrating
how this hybrid approach can enhance system performance and energy efficiency are
combined. Furthermore, hybrid models integrating physical and data-driven approaches for
building energy prediction, highlighting how this combination can provide more accurate and
robust predictions compared to using a single modelling technique are discussed.

3.3.3 Summary

The modelling techniques for buildings are diverse, each with its own set of advantages and
limitations. Mathematical and simulation-based models provide a strong basis for system
understanding and performance prediction, while agent-based and machine learning
models offer innovative ways to handle complex behaviors and large datasets. Hybrid models
present a promising direction for future research by integrating the strengths of various
techniques to address the multifaceted challenges in building modelling.
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4 Conclusions

This document provides guidance on data quality in sensor networks. It provides an overview
of metrics that can be used to assess the data quality of a sensor network. There are many
distinct aspects of data quality one can assess, and which metrics are important depends on
the use case. Based on the use cases used in the guide it is most important that data is
complete (completeness) and correct (accuracy). In addition, it is also important that the data
is traceable and not outdated (timeliness).

Many aspects of data quality depend highly on the specific application or use case. One thing
is the required number of sensors in a sensor network affecting the spatial coverage whilst
the quality of the individual sensors affect the accuracy. In the case of large-scale
deployments, the cost of the sensors cannot be too high, which means that the sensors will
be of lower quality. In other cases, the aim is typically to employ high-quality sensors.

In sensor networks, lack of data coverage can disrupt reporting. Some common problems
can be met with mitigation strategies such as duplication of sensor nodes. Field calibration
campaigns can fail to produce sufficient data to give confidence in derived calibration models.
This can be mitigated by increasing the duration of the calibration effort. This can be critical
if continuous reporting is required since network nodes being used in the field calibration
campaign cannot be used at the deployment locations. Accuracy is a mandatory requirement
that can be attained to a certain extent with low-cost sensors in a trade off with costs.

When it comes to validating data there are a few common steps. First it is necessary to get a
thorough understanding of the data to capture the relationships and intricacies. From here
different data quality dimensions can be selected based on their importance and used as the
foundation of creating data validation rules. Before creating any rules, it can also be beneficial
to define any critical data, i.e. which data is most important for example from a risk
perspective. The validation rules should consider the business rules, risks, needs, and
expectations of the data consumers. Furthermore, they should be measurable. With a set of
measurable rules, it is possible to define metrics to capture these. The process of creating
validation rules can be repeated continuously. In the beginning, it is to ensure the right rules
are formulated and later for maintaining rules as requirements change or new uses of data
are discovered. Implementing data validation rules as an automated process in a given
system is desirable to ensure constant validation of new data and due to the volume, speed,
and variety of data.

The typical lifecycle of a node is similar in air quality monitoring networks, networks of
temperature sensors for district heating, and sensors in smart buildings. Very long lifecycles
are expected in sensors in gas flow sensor networks (-20 years), district heating networks (-
16 years), and smart building sensor networks (large networks with difficult recalibration
processes). The lifecycle of sensor network in heat treatment of high value components is
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very repetitive and happens under harsh conditions, while network operators are aiming for
good performance over an exploitation period of several years.

Three prototypical sensor network scenarios are proposed to formulate guidelines and
practical considerations for the application of such methods in real sensor networks. For
each scenario, multiple promising and existing co-calibration methods are presented. The
advantages of these methods regarding metrologically sound results are briefly discussed
for each method, revealing a lack of uncertainty evaluation in many methods. Moreover,
general remarks are provided that enhance the data quality of suitable datasets and prepare
the automation of in-situ calibration methods. Finally, the applicability in real-world use cases
were discussed for three generic scenarios corresponding to common sensor network
configurations: dense networks with stationary sensors, sparse networks with stationary
sensors and sparse networks with mobile sensors and stationary reference nodes. The latter
of the three scenarios was further discussed for the specific case of air-quality monitoring
networks. It was shown that the methods for co-calibration and in situ calibration must take
the mobility of individual sensor nodes into account. The use of low-cost sensors in such
networks further increases the need to develop methods for uncertainty-aware sensor
fusion, drift detection, dynamic uncertainty estimation, and optimized traceability paths.

Sensor fusion techniques are known to be integral to several domains with sensor network
use cases. The applications range from interpolation in the form of deducing parameters at
different locations to the use of sensor fusion for drift detection. In order for the developed
methods to be applied in a trustworthy manner, ensuring the uncertainty awareness and
hence the traceability of the methods is of utmost importance. Since such methods will
almost certainly involve the use of time-varying quantities, the uncertainty awareness must
also account for the dynamic nature of the system. In a brief literature review special
emphasis was placed on consensus filtering and Kalman filters as commonly used data fusion
methods. A discussion of a set of real-world use cases and their individual requirements with
respect to sensor fusion and dynamic calibration showed the potential application of sensor
fusion to sensor network use cases is varied. The combination of data-driven and physics-
based models for drift detection was found to be a particularly important subject. In the
context of metrology, the propagation of uncertainty to the fused value is of utmost
importance.

The modelling techniques for buildings are diverse, each with its own set of advantages and
limitations. Mathematical and simulation-based models provide a strong basis for system
understanding and performance prediction, while agent-based and machine learning
models offer innovative ways to handle complex behaviors and large datasets. Hybrid models
present a promising direction for future research by integrating the strengths of various
techniques to address the multifaceted challenges in building modelling.
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6 Appendix A

FunSNM consortium/stakeholder level survey (A1.2.2) (VINS, FORCE)

Dear participants,
Thank you for participating in this consortium/stakeholder level short survey!

The survey aims to elucidate different data requirements during the lifecycle of a typical network
node, as well as data requirements for a complete sensor network during the deployment (data
coverage needed for metrics, methods, results reporting, physical modelling, possibility of soft
sensor support etc.)

Please fill in this survey based on the current practices in sensor networks you have experience
with. The goal is to capture current practices and requirements, so that the methods developed
in FUnSNM can be used where they fit best once they are fully developed.

There are only 5 questions in the survey, but please take your time and be as detailed as possible
in your answers.

Question 1:
What is your application of sensor networks?

Question 2:
Describe the different periods/steps of lifecycle of a typical network node in your
application of a sensor network.

Question 3:

Describe the data requirements such as amount of needed data, data coverage, other
indicators of data quality that are expected during the lifecycle of a sensor node. Use each
of the different periods/steps of a lifecycle you have described in the previous question to
indicate data requirements. Please be as detailed as possible.

Question 4:

Describe the typical and/or possible use-cases of your sensor network in more detail along
with the data requirements that are expected from a deployed sensor network. If
applicable/appropriate comment on the physical modelling used, and possibility of soft
sensor support.

Question 5:

The extent of needed data is different for different sensor networks, influencing operational
costs and loss-benefits considerations. How is this manifested in your considered sensor
network example, and what are some mitigation strategies?
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7 Appendix B

Overview of sensor type, calibration model and features, performance metrics, training and test datasets used in the global calibration approach in

low-cost sensor networks.

regression)

variance R?, MAE
(ppb), bias (ppb)

Sensor type Calibration Model features | Performance Training  and  test | Highlighted ideas Research group
model metrics dataset
PM, 5 Optical nephelometer | (Huber) linear | LCS PM signal, | mean  absolute | In field 3 x 10 units x 3 | Ten calibration models that were | De Vito et al, 2023
PMio PMS7003  (Nanchang | regression relative error (MAE) and | weeks in 2 seasons | trained on one device, models that
Panteng  Technology humidity, R2. Both short | (winter and summer). were trained on two devices,
Co. Ltd. Plantower, intercept term (same models that were trained on three
China) season) and long devices, and so on. Use of 5 or
term (season to more units in global model
season) reduces both interquartile and
performance was variance intervals in MAE and R2.
estimated. However, the median of both
metrics remains similar.
Cco Alphasense B4 Limited CO, CO, T, T2 | mean normalized | In field collocations of Malings et al, 2019
Electrochemical quadratic RH, RH?, CO*T, | bias (MNB), | the LCS units with
regression CO*RH, T*RH, | coefficient of | regulatory-grade
intercept. variation in the | monitors. 75% of LCS
Note thatnotall | mean  absolute | units used for training,
quadratic error (CYMAE). | remaining units for test.
termsareinthe | Pearson linear | Up to 3-4 weeks of
feature set | correlation training data. 3-75 days
(hence the | coefficient (R), | testing.
name limited | precision,
quadratic explained

..
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Alphasense NO-B4

model with
single  hidden
layer of 20
neurons

sensors
alongside T and
RH

bias (MNB),
coefficient of
variation in the
mean  absolute
error (CVMAE).
Pearson linear
correlation
coefficient (R),
precision,

the LCS units with
regulatory-grade
monitors. 75/% of LCS
units used for training,
remaining units for test.
Up to 3-4 weeks of
training data. 4-93 days
testing period.

models can be reduced by using
single model architecture for all
gas species, e.g. quadratic models
or RF with linear model for high
concentrations.

co Temperature- Orthogonalized Limit of In lab 6 replicas of a Miquel-Ibarz et al, 2022
modulated MOX | Partial  Least- detection (LOD) | temperature-
sensor SB-500-12 (FIS | Squares (O- as per IUPAC | modulated MOX sensor
Inc., Japan) PLS) with definition in low | exposed to gas

Repeated concentration mixtures of carbon
Stratified K- range. monoxide (range 0-20
Fold Cross- Performance of | ppm) and  humid
validation for global models | synthetic air (range 20-
model built  with data | 80% RH at 26 + 1 <C)
optimization from 1 to 4| inside a laboratory

sensors is tested | controlled gas mixing

when applied to station.

unseen sensors.

CO, nondispersive infrared | hybrid random | Random forest | mean normalized | In field collocations of | If estimated concentration | Malings et al, 2019
(NDIR) CO2 sensor, also | forest-linear with inputs | bias (MNB), | the LCS units with | exceeds 90 % of the maximum | supplement
measures T and RH | regression from all sensors | coefficient of | regulatory-grade concentration observed
(SST model alongside T and | variation in the | monitors. 75/% of LCS | during the training, a linear model
Sensing, UK) RH, which is for | mean  absolute | units used for training, | is used instead of random forest

high error (CYMAE). | remaining units for test.
concentration Pearson  linear | Up to 3-4 weeks of
replaced with | correlation training data.
linear  model | coefficient (R),
(with  features | precision,
single  sensor | explained
output variance R? MAE
alongside Tand | (ppb), bias (ppb)
RH).
NO Electrochemical Neural network | inputs from all | mean normalized | In field collocations of | Overhead of wusing different | Malings et al, 2019
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explained
variance R?, MAE
(ppb), bias (ppb)
NO Electrochemical Machine Basic  model | MAE, R? and | In field 4-5 months of | Both models with LCS data inputs | Abu-Hani et al, 2024
Alphasense NO-B4 learning based: | has six | RMSE 1h averages. Training | only were used, and models with
Multivariate features: data-set split into k- | additional O3 from nearby
Each LCS unit consists | Linear voltage signals folds (k=5), 1 split used | reference. LCS data was
of four electrochemical | Regression of  the 4 for parameter tuning, | standardized using Z scoring.
sensors:  two  NO2 | (MLR), Support | electrochemical and then models were
sensors and two NO Vector sensors: NO_A, tested on secondary
sensors, along with | Regression NO_B, NO2_A, units.
temperature (T) and | (SVR), and | and NO2.B, T
relative humidity (RH) | Random Forest | and RH.
Sensors (Sensirion | (RF) Additionally,
STH21) improved
model includes
O3  obtained
from  nearby
monitoring
stations.
NO, electrochemical hybrid random | Random forest | mean normalized | In field collocations of | If  estimated concentration | Malings et al, 2019
Alphasense NO2-B43F | forest-linear with inputs | bias (MNB), | the LCS units with | exceeds 90 % of the maximum
regression fromall sensors | coefficient of | regulatory-grade concentration observed
model alongside Tand | variation in the | monitors. 75/% of LCS | during the training, a linear model
RH, which is for | mean  absolute | units used for training, | is used instead of random forest
high error (CYMAE). | remaining units for test.
concentration Pearson  linear | Up to 3-4 weeks of
replaced with | correlation training data, testing 4
linear  model | coefficient (R), | to 110 days.
(with  features | precision,
single  sensor | explained
output variance R?, MAE
alongside Tand | (ppb), bias (ppb)
RH).
NO> electrochemical Machine Basic  model | MAE, R?2 and | In field 4-5 months of | Both models with LCS data inputs | Abu-Hani et al, 2024
Alphasense NO2-B43F | learning based: | has six | RMSE 1h averages. Training | only were used, and models with
Multivariate features: data-set split into k- | additional O3 from nearby
Linear voltage signals folds (k=5), 1 split used
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Each LCS unit consists
of four electrochemical
sensors:  two  NO,

Regression
(MLR), Support
Vector

of the 4
electrochemical
sensors: NO_A,

for parameter tuning,
and then models were
tested on secondary

reference. LCS data  was
standardized using Z scoring.

total, 906 UGMs were
set, exposing all three
SGP40 Sensors

sensors and two NO Regression NO_B, NO2A units.
sensors, along with | (SVR), and | and NO2.B, T
temperature (T) and | Random Forest | and RH.
relative humidity (RH) | (RF) Additionally,
Sensors (Sensirion improved
STH21) model includes
O3 obtained
from  nearby
monitoring
stations.
05 Alphasense B4 hybrid random | Random forest | mean normalized | In field collocations of | If estimated concentration | Malings et al, 2019
electrochemical forest-linear with inputs | bias (MNB), | the LCS units with | exceeds 90 % of the maximum
regression fromall sensors | coefficient of | regulatory-grade concentration observed
model alongside Tand | variation in the | monitors. 75/% of LCS | during the training, a linear model
RH, which is for | mean  absolute | units used for training, | is used instead of random forest
high error (CYMAE). | remaining units for test.
concentration Pearson  linear | Up to 3-4 weeks of
replaced with | correlation training data. 2-76 days
linear  model | coefficient (R), | testing period.
(with  features | precision,
single  sensor | explained
output variance R?, MAE
alongside Tand | (ppb), bias (ppb)
RH).
VOCs MOS  gas  sensor | Deep transfer | Deep  neural | RMSE In lab multiple Robin et al, 2022
(SGP40, Sensirion AG, | learning model. | networkwith 10 unique gas mixtures
Stafa, Switzerland) layers, inputis4 | 15 - 40 ppb | (UGM) were randomly
(gas sensitive | across  various | defined based on
layers)  x1440 | species of VOCs, | predefined
array (144 | 110 ppb for CO, | concentration
seconds x 10Hz | 50 ppb for H.. distributions with Latin
sampling) hypercube sampling. In
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simultaneously for
1440 seconds, yielding
an overall calibration
duration of more than

15 days.
VOCs Alphasense (UK) | NA NA NA NA NA Malings et al, 2019
photoionization
detector
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8 Appendix C

Evaluation of levels for models and digital twins as proposed by Den et al. [5]

Control Feedback
Optimization
Interaction

Level 5
l l l I . .
Real-Time Visuvalization E E Di gltal Twins
Real-Time Monitoring - = Level 4
. Illl
i ;. Q.‘., 2l s 0000 |
1 « ,_::C BIM+AI o
¥ 2 2 ol ) eve
w; >N %i\ = Decision Making
! e O Data-based Prediction’
Concept Design = T .
Construction BIM+Sensors
Schedulug Level 2
BIM+Simulation
M Level 1
Operauon
Sim- Based Prediction

BIM

Figure 1: Evolution of BIM to digital twins. Copied from [5]

Framework for deriving a digital twin as proposed by Yoon [14]

Building design stages Operation/Commissioning stages

Building design information White-box
models Continual fine-tuning
Building Simulated data Possible for .
Simulation EEER  Gray-box

modeling

Surrogate
modeling

Design
models

Operational
models

Transfer
learning
4

Only for neural
network -based models

Prebuilt models
(in other buildings or
other zones)

Continual fine-tuning

Fig. 4. Transitional process from design models to operational models using the applied techniques.
Figure 2:Copied from [14]
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Tools utilized for building simulation according to [17]

Review on the applications of building simulation for operation.

Optimization Strategy

Type of Application (Case study)

Ref. buildings Tools
System

[741 non-residential Modelica [ ]

building
[75] educational DesignBuilder (]

building
[63] hotel DeST L ]
[571 mosque EnergyPlus ®
[76] educational R

building
[62] metro station TRNSYS
771 commercial IES-VE

building
[78] - EnergyPlus,

CONTAM, and
Matlab

[791 - Matlab
[80] data center TRNSYS
[81] office building EnergyPlus

- The compressor speed PID-controller parameters, Kp and T;
were optimized.

- Heating and cooling setting temperature of air conditioning
were selected as decision-making parameters.

* The output schemes of the solar CCHP under climate change
were tackled.

- The HVAC setpoint schedule is modified subject to the
thermal-comfort threshold based on the temperature response
as well as the occupancy prediction.

- Identification for flow rates of chilled water and condensing
water, the supplied chilled water temperature, and the cooling
tower fan speed.

- The chiller loading was optimized by adjusting the set points
of the chilled water outlet temperature.

- The supply temperature of the AHU and the airflow of VAV
are optimized independently.

- Optimal trajectories of damper angles and fan pressure were
determined.

- The pressure drops of AHU’s filters due to clogging were
predict.

- The operation mode (mechanical cooling, partial, free cooling,
and free cooling) that can satisfy the cooling requirement and
give the best performance was selected.

- Window and ventilation supply air fans were controlled in
mixed-mode buildings.

The concept of a digital twin according to [17]
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Fig. 7. Concept of digital twins.
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The role of simulations in digital twins according to [17]

Simulations of real buildings
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